These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 37692437)

  • 1. A hypervariable intron of the
    Weeden NF; Lavin M; Abbo S; Coyne CJ; McPhee K
    Front Plant Sci; 2023; 14():1233280. PubMed ID: 37692437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domestication of Pea (
    Weeden NF
    Front Plant Sci; 2018; 9():515. PubMed ID: 29720994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast DNA variation and evolution in pisum: patterns of change and phylogenetic analysis.
    Palmer JD; Jorgensen RA; Thompson WF
    Genetics; 1985 Jan; 109(1):195-213. PubMed ID: 17246248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and genetic determinants of amphicarpy in Pisum fulvum, a wild relative of domesticated pea.
    Hellwig T; Flor A; Saranga Y; Coyne CJ; Main D; Sherman A; Ophir R; Abbo S
    Plant Sci; 2020 Sep; 298():110566. PubMed ID: 32771167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Evidence for Two Domestication Events in the Pea Crop.
    Trněný O; Brus J; Hradilová I; Rathore A; Das RR; Kopecký P; Coyne CJ; Reeves P; Richards C; Smýkal P
    Genes (Basel); 2018 Nov; 9(11):. PubMed ID: 30404223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes.
    Bogdanova VS; Mglinets AV; Shatskaya NV; Kosterin OE; Solovyev VI; Vasiliev GV
    Mol Phylogenet Evol; 2018 Dec; 129():280-290. PubMed ID: 30195476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum.
    Baranyi M; Greilhuber J
    Theor Appl Genet; 1996 Mar; 92(3-4):297-307. PubMed ID: 24166250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for the natural distribution of crop wild-relatives with limited adaptability: The case of the wild pea Pisum fulvum.
    Hellwig T; Abbo S; Sherman A; Ophir R
    Plant Sci; 2021 Sep; 310():110957. PubMed ID: 34315583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Band composition of electrophoretic spectra of storage proteins in interspecific pea hybrids].
    Bobkov SV; Lazareva TN
    Genetika; 2012 Jan; 48(1):56-61. PubMed ID: 22567854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene.
    Zaytseva OO; Bogdanova VS; Kosterin OE
    Gene; 2012 Aug; 504(2):192-202. PubMed ID: 22613846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene.
    Shcherban AB; Schichkina AA; Salina EA
    BMC Plant Biol; 2016 Nov; 16(Suppl 3):236. PubMed ID: 28105942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo super-early progeny in interspecific crosses Pisum sativum L. × P. fulvum Sibth. et Sm.
    Sari H; Sari D; Eker T; Toker C
    Sci Rep; 2021 Oct; 11(1):19706. PubMed ID: 34611237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Density Integrated DArTseq SNP-Based Genetic Map of
    Barilli E; Cobos MJ; Carrillo E; Kilian A; Carling J; Rubiales D
    Front Plant Sci; 2018; 9():167. PubMed ID: 29497430
    [No Abstract]   [Full Text] [Related]  

  • 14. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers.
    Zong X; Redden RJ; Liu Q; Wang S; Guan J; Liu J; Xu Y; Liu X; Gu J; Yan L; Ades P; Ford R
    Theor Appl Genet; 2009 Jan; 118(2):193-204. PubMed ID: 18815768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping QTLs for Super-Earliness and Agro-Morphological Traits in RILs Population Derived from Interspecific Crosses between
    Sari H; Eker T; Tosun HS; Mutlu N; Celik I; Toker C
    Curr Issues Mol Biol; 2023 Jan; 45(1):663-676. PubMed ID: 36661530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the north east Himalayan region.
    Sharma L; Prasanna BM; Ramesh B
    Genetica; 2010 Jun; 138(6):619-31. PubMed ID: 20107870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Brassica nigra collections using simple sequence repeat markers reveals distinct groups associated with geographical location, and frequent mislabelling of species identity.
    Pradhan A; Nelson MN; Plummer JA; Cowling WA; Yan G
    Genome; 2011 Jan; 54(1):50-63. PubMed ID: 21217806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome size variation in Pisum sativum.
    Greilhuber J; Ebert I
    Genome; 1994 Aug; 37(4):646-55. PubMed ID: 18470109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution.
    Zaytseva OO; Gunbin KV; Mglinets AV; Kosterin OE
    Gene; 2015 Feb; 556(2):235-44. PubMed ID: 25476028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection.
    Holdsworth WL; Gazave E; Cheng P; Myers JR; Gore MA; Coyne CJ; McGee RJ; Mazourek M
    Hortic Res; 2017; 4():17017. PubMed ID: 28503311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.