These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37692575)

  • 61. The genomic and proteomic landscape in oral lichen planus versus oral squamous cell carcinoma: a scoping review.
    Xie F; Meves A; Lehman JS
    Int J Dermatol; 2022 Oct; 61(10):1227-1236. PubMed ID: 35575880
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diagnostic Value of CircRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma: a Meta-Analysis.
    Wang M; Zhang L; Ren W; Li S; Zhi K; Zheng J; Gao L
    Front Oncol; 2021; 11():693284. PubMed ID: 34307158
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma.
    Lee YR; Kim G; Tak WY; Jang SY; Kweon YO; Park JG; Lee HW; Han YS; Chun JM; Park SY; Hur K
    Int J Cancer; 2019 Mar; 144(6):1444-1452. PubMed ID: 30338850
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Exosome-derived long non-coding RNA ADAMTS9-AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway.
    Zhou S; Zhu Y; Li Z; Zhu Y; He Z; Zhang C
    J Cell Mol Med; 2021 Feb; 25(4):2262-2273. PubMed ID: 33345447
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Serum exosome-derived biomarkers for the early detection of oral squamous cell carcinoma.
    Guo H; Jiang W; Huang S; Huang X; Li C
    Mol Cell Biochem; 2021 Dec; 476(12):4435-4447. PubMed ID: 34468926
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Circulating MicroRNA-21 Expression as a Novel Serum Biomarker for Oral Sub-Mucous Fibrosis and Oral Squamous Cell Carcinoma.
    Singh P; Srivastava AN; Sharma R; Mateen S; Shukla B; Singh A; Chandel S
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):1053-1057. PubMed ID: 29699056
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exosomes derived from oral squamous cell carcinoma tissue accelerate diabetic wound healing.
    Zhang M; Guo J; Xiang K; Chen J; Wang C; Jiang T; Kang Y; Xu X; Li J; Yang X; Chen Z
    Am J Physiol Cell Physiol; 2023 Jun; 324(6):C1307-C1319. PubMed ID: 37154491
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma. A systematic review.
    Al Rawi N; Elmabrouk N; Abu Kou R; Mkadmi S; Rizvi Z; Hamdoon Z
    Arch Oral Biol; 2021 May; 125():105108. PubMed ID: 33756383
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chronic mechanical irritation and oral squamous cell carcinoma: A systematic review and meta-analysis.
    Gupta AA; Kheur S; Varadarajan S; Parveen S; Dewan H; Alhazmi YA; Raj TA; Testarelli L; Patil S
    Bosn J Basic Med Sci; 2021 Dec; 21(6):647-658. PubMed ID: 33823123
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Clinical assessment for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults.
    Walsh T; Warnakulasuriya S; Lingen MW; Kerr AR; Ogden GR; Glenny AM; Macey R
    Cochrane Database Syst Rev; 2021 Dec; 12(12):CD010173. PubMed ID: 34891214
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MiR-3529-3p from PDGF-BB-induced cancer-associated fibroblast-derived exosomes promotes the malignancy of oral squamous cell carcinoma.
    You D; Wang Y; Xu J; Yang R; Wang W; Wang X; Cao X; Li Y; Yu L; Wang W; Shi Y; Zhang C; Yang H; He Y; Bian L
    Discov Oncol; 2023 Sep; 14(1):166. PubMed ID: 37668846
    [TBL] [Abstract][Full Text] [Related]  

  • 72. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma.
    Xiao M; Zhang J; Chen W; Chen W
    J Exp Clin Cancer Res; 2018 Jul; 37(1):143. PubMed ID: 29986759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway.
    Pang X; Wang SS; Zhang M; Jiang J; Fan HY; Wu JS; Wang HF; Liang XH; Tang YL
    Cancer Immunol Immunother; 2021 Apr; 70(4):1015-1029. PubMed ID: 33104837
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessment of MicroRNA-15a and MicroRNA-16-1 Salivary Level in Oral Squamous Cell Carcinoma Patients.
    Koopaie M; Manifar S; Lahiji SS
    Microrna; 2021; 10(1):74-79. PubMed ID: 33970852
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polymorphisms in four microRNAs and risk of oral squamous cell cancer: a meta-analysis.
    Zeng J; Yi X; Liu H; Yang Y; Duan Y; Chen H
    Oncotarget; 2018 Feb; 9(9):8695-8705. PubMed ID: 29492228
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The budding and depth of invasion model in oral cancer: A systematic review and meta-analysis.
    Wahab A; Onkamo O; Pirinen M; Almangush A; Salo T
    Oral Dis; 2022 Mar; 28(2):275-283. PubMed ID: 33031610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Circulating Plasma Extracellular Microvesicle MicroRNA Cargo and Endothelial Dysfunction in Children with Obstructive Sleep Apnea.
    Khalyfa A; Kheirandish-Gozal L; Khalyfa AA; Philby MF; Alonso-Álvarez ML; Mohammadi M; Bhattacharjee R; Terán-Santos J; Huang L; Andrade J; Gozal D
    Am J Respir Crit Care Med; 2016 Nov; 194(9):1116-1126. PubMed ID: 27163713
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells.
    Zhuang D; Wang S; Liu G; Liu P; Deng H; Sun J; Liu C; Leng X; Zhang Q; Bai F; Mi J; Wu X
    Front Oncol; 2022; 12():943477. PubMed ID: 36158698
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma.
    Law ZJ; Khoo XH; Lim PT; Goh BH; Ming LC; Lee WL; Goh HP
    Front Mol Biosci; 2021; 8():629888. PubMed ID: 33768115
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Circulating Exosomal miRNAs Signal Circadian Misalignment to Peripheral Metabolic Tissues.
    Khalyfa A; Gaddameedhi S; Crooks E; Zhang C; Li Y; Qiao Z; Trzepizur W; Kay SA; Andrade J; Satterfield BC; Hansen DA; Kheirandish-Gozal L; Van Dongen HPA; Gozal D
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.