These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37692886)

  • 1. Simulated mental imagery for robotic task planning.
    Li S; Kulvicius T; Tamosiunaite M; Wörgötter F
    Front Neurorobot; 2023; 17():1218977. PubMed ID: 37692886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for neurosymbolic robot action planning using large language models.
    Capitanelli A; Mastrogiovanni F
    Front Neurorobot; 2024; 18():1342786. PubMed ID: 38895095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to reason over scene graphs: a case study of finetuning GPT-2 into a robot language model for grounded task planning.
    Chalvatzaki G; Younes A; Nandha D; Le AT; Ribeiro LFR; Gurevych I
    Front Robot AI; 2023; 10():1221739. PubMed ID: 37649810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor Imagery Analysis from Extensive EEG Data Representations Using Convolutional Neural Networks.
    Lomelin-Ibarra VA; Gutierrez-Rodriguez AE; Cantoral-Ceballos JA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primitive Action Based Combined Task and Motion Planning for the Service Robot.
    Jeon J; Jung HR; Yumbla F; Luong TA; Moon H
    Front Robot AI; 2022; 9():713470. PubMed ID: 35224001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-modal self-attention mechanism for controlling robot volleyball motion.
    Wang M; Liang Z
    Front Neurorobot; 2023; 17():1288463. PubMed ID: 38023451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plugin Framework-Based Neuro-Symbolic Grounded Task Planning for Multi-Agent System.
    Moon J
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Robotic Task Sequencing and Trajectory Planning on the Basis of Deep Reinforcement Learning.
    Dong X; Wan G; Zeng P; Song C; Cui S
    Biomimetics (Basel); 2023 Dec; 9(1):. PubMed ID: 38248584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).
    Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y
    Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Target Detection from Satellite Imagery Using Machine Learning.
    Tahir A; Munawar HS; Akram J; Adil M; Ali S; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network.
    Annala L; Neittaanmaki N; Paoli J; Zaar O; Polonen I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1600-1603. PubMed ID: 33018300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imagery May Arise from Associations Formed through Sensory Experience: A Network of Spiking Neurons Controlling a Robot Learns Visual Sequences in Order to Perform a Mental Rotation Task.
    McKinstry JL; Fleischer JG; Chen Y; Gall WE; Edelman GM
    PLoS One; 2016; 11(9):e0162155. PubMed ID: 27653977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imagined character recognition through EEG signals using deep convolutional neural network.
    Ullah S; Halim Z
    Med Biol Eng Comput; 2021 May; 59(5):1167-1183. PubMed ID: 33945075
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.