These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37693184)

  • 1. Motor crosslinking augments elasticity in active nematics.
    Redford SA; Colen J; Shivers JL; Zemsky S; Molaei M; Floyd C; Ruijgrok PV; Vitelli V; Bryant Z; Dinner AR; Gardel ML
    ArXiv; 2023 Aug; ():. PubMed ID: 37693184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor crosslinking augments elasticity in active nematics.
    Redford SA; Colen J; Shivers JL; Zemsky S; Molaei M; Floyd C; Ruijgrok PV; Vitelli V; Bryant Z; Dinner AR; Gardel ML
    Soft Matter; 2024 Mar; 20(11):2480-2490. PubMed ID: 38385209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.
    Blackwell R; Sweezy-Schindler O; Baldwin C; Hough LE; Glaser MA; Betterton MD
    Soft Matter; 2016 Mar; 12(10):2676-87. PubMed ID: 26742483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors.
    Lamson AR; Moore JM; Fang F; Glaser MA; Shelley MJ; Betterton MD
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):45. PubMed ID: 33779863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between activity and filament flexibility determines the emergent properties of active nematics.
    Joshi A; Putzig E; Baskaran A; Hagan MF
    Soft Matter; 2018 Dec; 15(1):94-101. PubMed ID: 30520495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catapulting of topological defects through elasticity bands in active nematics.
    Kumar N; Zhang R; Redford SA; de Pablo JJ; Gardel ML
    Soft Matter; 2022 Jul; 18(28):5271-5281. PubMed ID: 35789364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring.
    Coelho RCV; Araújo NAM; Telo da Gama MM
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200394. PubMed ID: 34455836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing instabilities reveal how to rationally design and control active crosslinked gels.
    Najma B; Varghese M; Tsidilkovski L; Lemma L; Baskaran A; Duclos G
    Nat Commun; 2022 Oct; 13(1):6465. PubMed ID: 36309493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active liquid crystals powered by force-sensing DNA-motor clusters.
    Tayar AM; Hagan MF; Dogic Z
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34285075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical properties of autonomous flows in 2D active nematics.
    Lemma LM; DeCamp SJ; You Z; Giomi L; Dogic Z
    Soft Matter; 2019 Apr; 15(15):3264-3272. PubMed ID: 30920553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous active matter: Band formation, bending, buckling, and defects.
    Vliegenthart GA; Ravichandran A; Ripoll M; Auth T; Gompper G
    Sci Adv; 2020 Jul; 6(30):eaaw9975. PubMed ID: 32832652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels.
    Head DA; Briels WJ; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032705. PubMed ID: 24730872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors.
    Memarian FL; Lopes JD; Schwarzendahl FJ; Athani MG; Sarpangala N; Gopinathan A; Beller DA; Dasbiswas K; Hirst LS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34934005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Microtubule Dynamics in Active Nematics.
    Lemma LM; Norton MM; Tayar AM; DeCamp SJ; Aghvami SA; Fraden S; Hagan MF; Dogic Z
    Phys Rev Lett; 2021 Oct; 127(14):148001. PubMed ID: 34652175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frank elasticity of composite colloidal nematics with anti-nematic order.
    Wensink HH
    Soft Matter; 2018 Nov; 14(44):8935-8944. PubMed ID: 30379187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable structure and dynamics of active liquid crystals.
    Kumar N; Zhang R; de Pablo JJ; Gardel ML
    Sci Adv; 2018 Oct; 4(10):eaat7779. PubMed ID: 30333990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable corrugated patterns in an active nematic sheet.
    Senoussi A; Kashida S; Voituriez R; Galas JC; Maitra A; Estevez-Torres A
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22464-22470. PubMed ID: 31611385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-activated microtubule-based two-dimensional active nematic.
    Zarei Z; Berezney J; Hensley A; Lemma L; Senbil N; Dogic Z; Fraden S
    Soft Matter; 2023 Sep; 19(35):6691-6699. PubMed ID: 37609884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the cellular-scale simulation of motor-driven cytoskeletal assemblies.
    Yan W; Ansari S; Lamson A; Glaser MA; Blackwell R; Betterton MD; Shelley M
    Elife; 2022 May; 11():. PubMed ID: 35617115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Dense Active Nematics from Microscopic Models.
    Patelli A; Djafer-Cherif I; Aranson IS; Bertin E; Chaté H
    Phys Rev Lett; 2019 Dec; 123(25):258001. PubMed ID: 31922774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.