These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37693207)

  • 1. Super-Resolution Deep Learning Reconstruction for Improved Image Quality of Coronary CT Angiography.
    Takafuji M; Kitagawa K; Mizutani S; Hamaguchi A; Kisou R; Iio K; Ichikawa K; Izumi D; Sakuma H
    Radiol Cardiothorac Imaging; 2023 Aug; 5(4):e230085. PubMed ID: 37693207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution deep learning reconstruction at coronary computed tomography angiography to evaluate the coronary arteries and in-stent lumen: an initial experience.
    Orii M; Sone M; Osaki T; Ueyama Y; Chiba T; Sasaki T; Yoshioka K
    BMC Med Imaging; 2023 Oct; 23(1):171. PubMed ID: 37904089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary Stent Evaluation by CTA: Image Quality Comparison Between Super-Resolution Deep Learning Reconstruction and Other Reconstruction Algorithms.
    Nagayama Y; Emoto T; Hayashi H; Kidoh M; Oda S; Nakaura T; Sakabe D; Funama Y; Tabata N; Ishii M; Yamanaga K; Fujisue K; Takashio S; Yamamoto E; Tsujita K; Hirai T
    AJR Am J Roentgenol; 2023 Nov; 221(5):599-610. PubMed ID: 37377362
    [No Abstract]   [Full Text] [Related]  

  • 6. Improvement of Spatial Resolution on Coronary CT Angiography by Using Super-Resolution Deep Learning Reconstruction.
    Tatsugami F; Higaki T; Kawashita I; Fukumoto W; Nakamura Y; Matsuura M; Lee TC; Zhou J; Cai L; Kitagawa T; Nakano Y; Awai K
    Acad Radiol; 2023 Nov; 30(11):2497-2504. PubMed ID: 36681533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution deep learning image reconstruction: image quality and myocardial homogeneity in coronary computed tomography angiography.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM
    J Cardiovasc Imaging; 2024 Sep; 32(1):30. PubMed ID: 39304957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary study of super-resolution deep learning reconstruction with cardiac option for evaluation of endovascular-treated intracranial aneurysms.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM; Kim JW
    Br J Radiol; 2024 Aug; 97(1160):1492-1500. PubMed ID: 38917414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH
    Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super resolution deep learning reconstruction for coronary CT angiography: A structured phantom study.
    Higaki T; Tatsugami F; Ohana M; Nakamura Y; Kawashita I; Awai K
    Eur J Radiol Open; 2024 Jun; 12():100570. PubMed ID: 38828096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 12. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
    Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T
    Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction.
    Yasaka K; Uehara S; Kato S; Watanabe Y; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    J Imaging Inform Med; 2024 Oct; 37(5):2466-2473. PubMed ID: 38671337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict.
    Yasaka K; Kanzawa J; Nakaya M; Kurokawa R; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    Acad Radiol; 2024 Dec; 31(12):5118-5127. PubMed ID: 38897913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Image Quality of Coronary CT Angiography Using Deep Learning-Based CT Reconstruction: Phantom and Patient Studies.
    Jeon PH; Jeon SH; Ko D; An G; Shim H; Otgonbaatar C; Son K; Kim D; Ko SM; Chung MA
    Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of four computed tomography reconstruction algorithms using a coronary artery phantom.
    Sawamura S; Kato S; Funama Y; Oda S; Mochizuki H; Inagaki S; Takeuchi Y; Morioka T; Izumi T; Ota Y; Kawagoe H; Cheng S; Nakayama N; Fukui K; Tsutsumi T; Iwasawa T; Utsunomiya D
    Quant Imaging Med Surg; 2024 Apr; 14(4):2870-2883. PubMed ID: 38617144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.