These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37693569)

  • 21. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine.
    Vu T; Borgesi J; Soyring J; D'Alia M; Davidson SL; Shim J
    Nanoscale; 2019 May; 11(21):10536-10545. PubMed ID: 31116213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore.
    Dong Z; Kennedy E; Hokmabadi M; Timp G
    ACS Nano; 2017 Jun; 11(6):5440-5452. PubMed ID: 28538092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of the nanopore translocation dynamics of simple structured polynucleotides.
    Schink S; Renner S; Alim K; Arnaut V; Simmel FC; Gerland U
    Biophys J; 2012 Jan; 102(1):85-95. PubMed ID: 22225801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer simulations and theory of protein translocation.
    Makarov DE
    Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores.
    Liang L; Liu F; Kong Z; Shen JW; Wang H; Wang H; Li L
    Phys Chem Chem Phys; 2018 Nov; 20(45):28886-28893. PubMed ID: 30420980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurements of DNA immobilized in the alpha-hemolysin nanopore.
    Purnell R; Schmidt J
    Methods Mol Biol; 2012; 870():39-53. PubMed ID: 22528257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations.
    Di Muccio G; Rossini AE; Di Marino D; Zollo G; Chinappi M
    Sci Rep; 2019 Apr; 9(1):6440. PubMed ID: 31015503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise and bandwidth of current recordings from submicrometer pores and nanopores.
    Uram JD; Ke K; Mayer M
    ACS Nano; 2008 May; 2(5):857-72. PubMed ID: 19206482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is the Volume Exclusion Model Practicable for Nanopore Protein Sequencing?
    Huo MZ; Li MY; Ying YL; Long YT
    Anal Chem; 2021 Aug; 93(33):11364-11369. PubMed ID: 34379401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].
    Zhang WW; Ying YL; Long YT
    Se Pu; 2020 Sep; 38(9):993-998. PubMed ID: 34213265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore.
    Wang Y; Gu LQ
    AIMS Mater Sci; 2015; 2(4):448-472. PubMed ID: 30931380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model.
    Wilson J; Sarthak K; Si W; Gao L; Aksimentiev A
    ACS Sens; 2019 Mar; 4(3):634-644. PubMed ID: 30821441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry.
    Reiner JE; Kasianowicz JJ; Nablo BJ; Robertson JW
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12080-5. PubMed ID: 20566890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calling the amino acid sequence of a protein/peptide from the nanospectrum produced by a sub-nanometer diameter pore.
    Liu X; Dong Z; Timp G
    Sci Rep; 2022 Oct; 12(1):17853. PubMed ID: 36284132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brownian dynamics of a neutral protein moving through a nanopore in an electrically biased membrane.
    Wells CC; Melnikov DV; Gracheva ME
    J Chem Phys; 2019 Mar; 150(11):115103. PubMed ID: 30901983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study.
    De Biase PM; Ervin EN; Pal P; Samoylova O; Markosyan S; Keehan MG; Barrall GA; Noskov SY
    Nanoscale; 2016 Jun; 8(22):11571-9. PubMed ID: 27210516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.