BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37693629)

  • 1. SIMVI reveals intrinsic and spatial-induced states in spatial omics data.
    Dong M; Kluger H; Fan R; Kluger Y
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOTIP is a versatile method for microenvironment modeling with spatial omics data.
    Yuan Z; Li Y; Shi M; Yang F; Gao J; Yao J; Zhang MQ
    Nat Commun; 2022 Nov; 13(1):7330. PubMed ID: 36443314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease.
    Maitra C; Seal DB; Das V; De RK
    Front Mol Biosci; 2023; 10():1184748. PubMed ID: 37293552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.
    Stickels RR; Murray E; Kumar P; Li J; Marshall JL; Di Bella DJ; Arlotta P; Macosko EZ; Chen F
    Nat Biotechnol; 2021 Mar; 39(3):313-319. PubMed ID: 33288904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering CITE-seq data with a canonical correlation-based deep learning method.
    Yuan M; Chen L; Deng M
    Front Genet; 2022; 13():977968. PubMed ID: 36072672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF).
    Comiter C; Vaishnav ED; Ciampricotti M; Li B; Yang Y; Rodig SJ; Turner M; Pfaff KL; Jané-Valbuena J; Slyper M; Waldman J; Vigneau S; Wu J; Blosser TR; Segerstolpe Å; Abravanel D; Wagle N; Zhuang X; Rudin CM; Klughammer J; Rozenblatt-Rosen O; Kobayash-Kirschvink KJ; Shu J; Regev A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.
    Thuilliez C; Moquin-Beaudry G; Khneisser P; Marques Da Costa ME; Karkar S; Boudhouche H; Drubay D; Audinot B; Geoerger B; Scoazec JY; Gaspar N; Marchais A
    Bioinform Adv; 2024; 4(1):vbae081. PubMed ID: 38915885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translator: A
    Xu S; Skarica M; Hwang A; Dai Y; Lee C; Girgenti MJ; Zhang J
    J Comput Biol; 2022 Jul; 29(7):619-633. PubMed ID: 35584295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering single-cell multimodal omics data with jrSiCKLSNMF.
    Ellis D; Roy A; Datta S
    Front Genet; 2023; 14():1179439. PubMed ID: 37359367
    [No Abstract]   [Full Text] [Related]  

  • 18. scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data.
    Zhan Y; Liu J; Ou-Yang L
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6121-6132. PubMed ID: 37725723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Generation of Paired Single-Cell Multiomics Profiles by Deep Learning.
    Lan M; Zhang S; Gao L
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301169. PubMed ID: 37114830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Fourier transform for spatial omics representation and analyses of complex organs.
    Chang Y; Liu J; Jiang Y; Ma A; Yeo YY; Guo Q; McNutt M; Krull J; Rodig SJ; Barouch DH; Nolan G; Xu D; Jiang S; Li Z; Liu B; Ma Q
    Res Sq; 2024 Feb; ():. PubMed ID: 38410424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.