These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37693653)

  • 1. Graded mesh B-spline collocation method for two parameters singularly perturbed boundary value problems.
    Andisso FS; Duressa GF
    MethodsX; 2023 Dec; 11():102336. PubMed ID: 37693653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parameter uniform method for two-parameter singularly perturbed boundary value problems with discontinuous data.
    Roy N; Jha A
    MethodsX; 2023; 10():102004. PubMed ID: 36684472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniformly convergent extended cubic B-spline collocation method for two parameters singularly perturbed time-delayed convection-diffusion problems.
    Negero NT
    BMC Res Notes; 2023 Oct; 16(1):282. PubMed ID: 37858117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniformly convergent computational method for singularly perturbed unsteady burger-huxley equation.
    Daba IT; Duressa GF
    MethodsX; 2022; 9():101886. PubMed ID: 36353358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer resolving numerical scheme for singularly perturbed parabolic convection-diffusion problem with an interior layer.
    Kusi GR; Habte AH; Bullo TA
    MethodsX; 2023; 10():101953. PubMed ID: 36545543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience.
    Daba IT; Duressa GF
    Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3418. PubMed ID: 33222414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tension spline fitted numerical scheme for singularly perturbed reaction-diffusion problem with negative shift.
    Ejere AH; Dinka TG; Woldaregay MM; Duressa GF
    BMC Res Notes; 2023 Jun; 16(1):112. PubMed ID: 37349785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spline-in-compression approximation of order of accuracy three (four) for second order non-linear IVPs on a graded mesh.
    Mohanty RK; Ghosh BP
    MethodsX; 2023 Dec; 11():102308. PubMed ID: 37601291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A uniformly convergent numerical scheme for solving singularly perturbed differential equations with large spatial delay.
    Ejere AH; Duressa GF; Woldaregay MM; Dinka TG
    SN Appl Sci; 2022; 4(12):324. PubMed ID: 36405546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition.
    Durmaz ME; Amirali I; Amiraliyev GM
    J Appl Math Comput; 2023; 69(1):505-528. PubMed ID: 35698573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid computational scheme for singularly perturbed Burgers'-Huxley equation.
    Daba IT; Gonfa GG
    MethodsX; 2024 Jun; 12():102574. PubMed ID: 38304393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approach to solve singularly perturbed boundary value problems with negative shift parameter.
    Duressa GF
    Heliyon; 2021 Jul; 7(7):e07497. PubMed ID: 34286144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate numerical scheme for singularly perturbed parabolic delay differential equation.
    Woldaregay MM; Duressa GF
    BMC Res Notes; 2021 Sep; 14(1):358. PubMed ID: 34526134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational method for singularly perturbed parabolic differential equations with discontinuous coefficients and large delay.
    Daba IT; Duressa GF
    Heliyon; 2022 Sep; 8(9):e10742. PubMed ID: 36193532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exponentially fitted numerical method for solving singularly perturbed delay reaction-diffusion problem with nonlocal boundary condition.
    Wondimu GM; Woldaregay MM; Duressa GF; Dinka TG
    BMC Res Notes; 2023 Jun; 16(1):94. PubMed ID: 37277831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourth-order fitted mesh scheme for semilinear singularly perturbed reaction-diffusion problems.
    Reda BT; Bullo TA; Duressa GF
    BMC Res Notes; 2023 Nov; 16(1):354. PubMed ID: 38031190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new spline technique for the time fractional diffusion-wave equation.
    Singh S; Singh S; Aggarwal A
    MethodsX; 2023; 10():102007. PubMed ID: 36660341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical method using cubic B-spline for a strongly coupled reaction-diffusion system.
    Abbas M; Majid AA; Md Ismail AI; Rashid A
    PLoS One; 2014; 9(1):e83265. PubMed ID: 24427270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.
    Cengizci S; Atay MT; Eryılmaz A
    Springerplus; 2016; 5():280. PubMed ID: 27006888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitted computational method for solving singularly perturbed small time lag problem.
    Tesfaye SK; Woldaregay MM; Dinka TG; Duressa GF
    BMC Res Notes; 2022 Oct; 15(1):318. PubMed ID: 36221103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.