These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37694172)

  • 1. CutFEM forward modeling for EEG source analysis.
    Erdbrügger T; Westhoff A; Höltershinken M; Radecke JO; Buschermöhle Y; Buyx A; Wallois F; Pursiainen S; Gross J; Lencer R; Engwer C; Wolters C
    Front Hum Neurosci; 2023; 17():1216758. PubMed ID: 37694172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CutFEM-based MEG forward modeling improves source separability and sensitivity to quasi-radial sources: A somatosensory group study.
    Erdbrügger T; Höltershinken M; Radecke JO; Buschermöhle Y; Wallois F; Pursiainen S; Gross J; Lencer R; Engwer C; Wolters C
    Hum Brain Mapp; 2024 Aug; 45(11):e26810. PubMed ID: 39140847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Unfitted Discontinuous Galerkin Method for Solving the EEG Forward Problem.
    Nusing A; Wolters CH; Brinck H; Engwer C
    IEEE Trans Biomed Eng; 2016 Dec; 63(12):2564-2575. PubMed ID: 27416584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FieldTrip-SimBio pipeline for EEG forward solutions.
    Vorwerk J; Oostenveld R; Piastra MC; Magyari L; Wolters CH
    Biomed Eng Online; 2018 Mar; 17(1):37. PubMed ID: 29580236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem.
    Wagner S; Lucka F; Vorwerk J; Herrmann CS; Nolte G; Burger M; Wolters CH
    Neuroimage; 2016 Oct; 140():163-73. PubMed ID: 27125841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem.
    Piastra MC; Nüßing A; Vorwerk J; Bornfleth H; Oostenveld R; Engwer C; Wolters CH
    Front Neurosci; 2018; 12():30. PubMed ID: 29456487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A realistic, accurate and fast source modeling approach for the EEG forward problem.
    Miinalainen T; Rezaei A; Us D; Nüßing A; Engwer C; Wolters CH; Pursiainen S
    Neuroimage; 2019 Jan; 184():56-67. PubMed ID: 30165251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mixed Finite Element Method to Solve the EEG Forward Problem.
    Vorwerk J; Engwer C; Pursiainen S; Wolters CH
    IEEE Trans Med Imaging; 2017 Apr; 36(4):930-941. PubMed ID: 27831869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry-adapted hexahedral meshes improve accuracy of finite-element-method-based EEG source analysis.
    Wolters CH; Anwander A; Berti G; Hartmann U
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1446-53. PubMed ID: 17694865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of volume conductor and source models to localize epileptic foci.
    Fuchs M; Wagner M; Kastner J
    J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on solving the forward problem in EEG source analysis.
    Hallez H; Vanrumste B; Grech R; Muscat J; De Clercq W; Vergult A; D'Asseler Y; Camilleri KP; Fabri SG; Van Huffel S; Lemahieu I
    J Neuroeng Rehabil; 2007 Nov; 4():46. PubMed ID: 18053144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of blood vessels in high-resolution volume conductor head modeling of EEG.
    Fiederer LDJ; Vorwerk J; Lucka F; Dannhauer M; Yang S; Dümpelmann M; Schulze-Bonhage A; Aertsen A; Speck O; Wolters CH; Ball T
    Neuroimage; 2016 Mar; 128():193-208. PubMed ID: 26747748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid boundary element-finite element approach for solving the EEG forward problem in brain modeling.
    Dayarian N; Khadem A
    Front Syst Neurosci; 2024; 18():1327674. PubMed ID: 38764980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity.
    Medani T; Garcia-Prieto J; Tadel F; Antonakakis M; Erdbrügger T; Höltershinken M; Mead W; Schrader S; Joshi A; Engwer C; Wolters CH; Mosher JC; Leahy RM
    Neuroimage; 2023 Feb; 267():119851. PubMed ID: 36599389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the forward problem in EEG source analysis by spherical and fdm head modeling: a comparative analysis - biomed 2009.
    Vatta F; Meneghini F; Esposito F; Mininel S; Di Salle F
    Biomed Sci Instrum; 2009; 45():382-8. PubMed ID: 19369793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems.
    Lee C; Im CH
    Brain Topogr; 2019 May; 32(3):354-362. PubMed ID: 30073558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multipole approach for EEG forward modeling using the finite element method.
    Vorwerk J; Hanrath A; Wolters CH; Grasedyck L
    Neuroimage; 2019 Nov; 201():116039. PubMed ID: 31369809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite-element reciprocity solution for EEG forward modeling with realistic individual head models.
    Ziegler E; Chellappa SL; Gaggioni G; Ly JQM; Vandewalle G; André E; Geuzaine C; Phillips C
    Neuroimage; 2014 Dec; 103():542-551. PubMed ID: 25204867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis.
    Lew S; Wolters CH; Dierkes T; Röer C; Macleod RS
    Appl Numer Math; 2009 Aug; 59(8):1970-1988. PubMed ID: 20161462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second-order finite element algorithm for solving the three-dimensional EEG forward problem.
    Zhang YC; Zhu SA; He B
    Phys Med Biol; 2004 Jul; 49(13):2975-87. PubMed ID: 15285259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.