These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37694444)

  • 1. Direct numerical simulations of a microswimmer in a viscoelastic fluid.
    Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R
    Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiparticle collision dynamics simulations of a squirmer in a nematic fluid.
    Mandal S; Mazza MG
    Eur Phys J E Soft Matter; 2021 May; 44(5):64. PubMed ID: 33939056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion by tangential deformation in a polymeric fluid.
    Zhu L; Do-Quang M; Lauga E; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011901. PubMed ID: 21405707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gyrotactic cluster formation of bottom-heavy squirmers.
    Rühle F; Zantop AW; Stark H
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.
    Li GJ; Karimi A; Ardekani AM
    Rheol Acta; 2014 Dec; 53(12):911-926. PubMed ID: 26855446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid.
    Yazdi S; Ardekani AM; Borhan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043002. PubMed ID: 25375589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent collective dynamics of bottom-heavy squirmers under gravity.
    Rühle F; Stark H
    Eur Phys J E Soft Matter; 2020 May; 43(5):26. PubMed ID: 32445113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotion of a microorganism in weakly viscoelastic liquids.
    De Corato M; Greco F; Maffettone PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053008. PubMed ID: 26651780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective sedimentation of squirmers under gravity.
    Kuhr JT; Blaschke J; Rühle F; Stark H
    Soft Matter; 2017 Oct; 13(41):7548-7555. PubMed ID: 28967939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids.
    Binagia JP; Guido CJ; Shaqfeh ESG
    Soft Matter; 2019 Jun; 15(24):4836-4855. PubMed ID: 31155624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immersed boundary method for two-phase fluids and gels and the swimming of
    Lee P; Wolgemuth CW
    Phys Fluids (1994); 2016 Jan; 28(1):011901. PubMed ID: 26858520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of a microorganism in a sheared viscoelastic liquid.
    De Corato M; D'Avino G
    Soft Matter; 2016 Dec; 13(1):196-211. PubMed ID: 27414249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data.
    Li C; Qin B; Gopinath A; Arratia PE; Thomases B; Guy RD
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.