These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37694511)

  • 1. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model.
    Pan M; Champer J
    Mol Ecol; 2023 Oct; 32(20):5673-5694. PubMed ID: 37694511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model.
    Zhang S; Champer J
    Proc Biol Sci; 2024 Jun; 291(2025):20240500. PubMed ID: 38889790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    Mol Ecol; 2021 Feb; 30(4):1086-1101. PubMed ID: 33404162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling homing suppression gene drive in haplodiploid organisms.
    Liu Y; Champer J
    Proc Biol Sci; 2022 Apr; 289(1972):20220320. PubMed ID: 35414240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space.
    Champer J; Zhao J; Champer SE; Liu J; Messer PW
    ACS Synth Biol; 2020 Apr; 9(4):779-792. PubMed ID: 32142612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial gene drives and pushed genetic waves.
    Tanaka H; Stone HA; Nelson DR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8452-8457. PubMed ID: 28743753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daisy-chain gene drives for the alteration of local populations.
    Noble C; Min J; Olejarz J; Buchthal J; Chavez A; Smidler AL; DeBenedictis EA; Church GM; Nowak MA; Esvelt KM
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8275-8282. PubMed ID: 30940750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys.
    de Haas FJH; Kläy L; Débarre F; Otto SP
    PLoS Genet; 2024 May; 20(5):e1011262. PubMed ID: 38753875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow and steady wins the race: Spatial and stochastic processes and the failure of suppression gene drives.
    Paril JF; Phillips BL
    Mol Ecol; 2022 Sep; 31(17):4451-4464. PubMed ID: 35790043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression.
    Taxiarchi C; Beaghton A; Don NI; Kyrou K; Gribble M; Shittu D; Collins SP; Beisel CL; Galizi R; Crisanti A
    Nat Commun; 2021 Jun; 12(1):3977. PubMed ID: 34172748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models.
    Liu Y; Teo W; Yang H; Champer J
    Ecol Lett; 2023 Jul; 26(7):1174-1185. PubMed ID: 37162099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene drives for vertebrate pest control: Realistic spatial modelling of eradication probabilities and times for island mouse populations.
    Birand A; Cassey P; Ross JV; Russell JC; Thomas P; Prowse TAA
    Mol Ecol; 2022 Mar; 31(6):1907-1923. PubMed ID: 35073448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of tethered gene drive systems for confined population modification or suppression.
    Metzloff M; Yang E; Dhole S; Clark AG; Messer PW; Champer J
    BMC Biol; 2022 May; 20(1):119. PubMed ID: 35606745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daisy-chain gene drives: The role of low cut-rate, resistance mutations, and maternal deposition.
    Verkuijl SAN; Anderson MAE; Alphey L; Bonsall MB
    PLoS Genet; 2022 Sep; 18(9):e1010370. PubMed ID: 36121880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles.
    Yang E; Metzloff M; Langmüller AM; Xu X; Clark AG; Messer PW; Champer J
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35394026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evading resistance to gene drives.
    Gomulkiewicz R; Thies ML; Bull JJ
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology.
    Marshall JM; Akbari OS
    ACS Chem Biol; 2018 Feb; 13(2):424-430. PubMed ID: 29370514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.