These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 37694622)
21. Updating exposure models of indoor air pollution due to vapor intrusion: Bayesian calibration of the Johnson-Ettinger model. Johnston JE; Sun Q; Gibson JM Environ Sci Technol; 2014 Feb; 48(4):2130-8. PubMed ID: 24422490 [TBL] [Abstract][Full Text] [Related]
22. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. Han L; Qian L; Yan J; Liu R; Du Y; Chen M Environ Sci Pollut Res Int; 2016 Jan; 23(2):1234-45. PubMed ID: 26354114 [TBL] [Abstract][Full Text] [Related]
23. Vapor intrusion in urban settings: effect of foundation features and source location. Yao Y; Pennell KG; Suuberg E Procedia Environ Sci; 2011; 4():245-250. PubMed ID: 24619471 [TBL] [Abstract][Full Text] [Related]
24. Relationship between vapor intrusion and human exposure to trichloroethylene. Archer NP; Bradford CM; Villanacci JF; Crain NE; Corsi RL; Chambers DM; Burk T; Blount BC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(13):1360-8. PubMed ID: 26259926 [TBL] [Abstract][Full Text] [Related]
25. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings. Hallberg KE; Levy LC; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D J Air Waste Manag Assoc; 2021 Sep; 71(9):1148-1158. PubMed ID: 33989123 [TBL] [Abstract][Full Text] [Related]
26. An alternative generic groundwater-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings. Levy LC; Hallberg KE; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D; Walker TR J Air Waste Manag Assoc; 2023 Apr; 73(4):258-270. PubMed ID: 36729994 [TBL] [Abstract][Full Text] [Related]
27. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study. Johnston JE; Gibson JM J Expo Sci Environ Epidemiol; 2014 Nov; 24(6):564-71. PubMed ID: 23549403 [TBL] [Abstract][Full Text] [Related]
28. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination. Yao Y; Mao F; Xiao Y; Luo J Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708 [TBL] [Abstract][Full Text] [Related]
29. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model. Abreu LD; Johnson PC Environ Sci Technol; 2005 Jun; 39(12):4550-61. PubMed ID: 16047792 [TBL] [Abstract][Full Text] [Related]
30. Role of the source to building lateral separation distance in petroleum vapor intrusion. Verginelli I; Capobianco O; Baciocchi R J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639 [TBL] [Abstract][Full Text] [Related]
31. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases. Ma J; Luo H; Devaull GE; Rixey WG; Alvarez PJ Environ Sci Technol; 2014; 48(1):474-81. PubMed ID: 24354291 [TBL] [Abstract][Full Text] [Related]
32. A conceptual model for vapor intrusion from groundwater through sewer lines. Beckley L; McHugh T Sci Total Environ; 2020 Jan; 698():134283. PubMed ID: 31783448 [TBL] [Abstract][Full Text] [Related]
34. Volatile organic compounds effective diffusion coefficients and fluxes estimation through two types of construction material. De Biase C; Loechel S; Putzmann T; Bittens M; Weiss H; Daus B Indoor Air; 2014 Jun; 24(3):272-82. PubMed ID: 24134144 [TBL] [Abstract][Full Text] [Related]
35. Comparison between PVI2D and Abreu-Johnson's Model for Petroleum Vapor Intrusion Assessment. Yao Y; Wang Y; Verginelli I; Suuberg EM; Ye J Vadose Zone J; 2016; 15(11):. PubMed ID: 29398981 [TBL] [Abstract][Full Text] [Related]
36. Comparison of the Johnson-Ettinger vapor intrusion screening model predictions with full three-dimensional model results. Yao Y; Shen R; Pennell KG; Suuberg EM Environ Sci Technol; 2011 Mar; 45(6):2227-35. PubMed ID: 21344848 [TBL] [Abstract][Full Text] [Related]
37. Comparison of RBCA and CalTOX for setting risk-based cleanup levels based on inhalation exposure. Chang SH; Kuo CY; Wang JW; Wang KS Chemosphere; 2004 Jul; 56(4):359-67. PubMed ID: 15183998 [TBL] [Abstract][Full Text] [Related]
38. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009 [TBL] [Abstract][Full Text] [Related]
39. Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario. Unnithan A; Bekele DN; Chadalavada S; Naidu R Sci Total Environ; 2021 Nov; 796():148885. PubMed ID: 34265614 [TBL] [Abstract][Full Text] [Related]