These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3769470)
21. Suppression of baseline wander in the ECG using a bilinearly transformed, null-phase filter. Pottala EW; Bailey JJ; Horton MR; Gradwohl JR J Electrocardiol; 1989; 22 Suppl():243-7. PubMed ID: 2614308 [TBL] [Abstract][Full Text] [Related]
22. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography. Alarcon G; Guy CN; Binnie CD J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409 [TBL] [Abstract][Full Text] [Related]
23. ECG baseline wander correction based on mean-median filter and empirical mode decomposition. Xin Y; Chen Y; Hao WT Biomed Mater Eng; 2014; 24(1):365-71. PubMed ID: 24211918 [TBL] [Abstract][Full Text] [Related]
24. The design of digital filters for biomedical signal processing. Part 3: The design of Butterworth and Chebychev filters. Challis RE; Kitney RI J Biomed Eng; 1983 Apr; 5(2):91-102. PubMed ID: 6855219 [TBL] [Abstract][Full Text] [Related]
25. The triangular wave test for electrocardiographic devices: a historical perspective. Bailey JJ J Electrocardiol; 2004; 37 Suppl():71-3. PubMed ID: 15534805 [TBL] [Abstract][Full Text] [Related]
26. Digital filtering: background and tutorial for psychophysiologists. Cook EW; Miller GA Psychophysiology; 1992 May; 29(3):350-67. PubMed ID: 1626044 [TBL] [Abstract][Full Text] [Related]
27. Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter. Xu L; Zhang D; Wang K; Li N; Wang X Comput Biol Med; 2007 May; 37(5):716-31. PubMed ID: 16930579 [TBL] [Abstract][Full Text] [Related]
28. Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study. Lenis G; Pilia N; Loewe A; Schulze WH; Dössel O Comput Math Methods Med; 2017; 2017():9295029. PubMed ID: 28373893 [TBL] [Abstract][Full Text] [Related]
29. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves. Christov I; Neycheva T; Schmid R; Stoyanov T; Abächerli R Med Biol Eng Comput; 2017 Sep; 55(9):1579-1588. PubMed ID: 28161875 [TBL] [Abstract][Full Text] [Related]
30. A low power level-crossing ADC for wearable wireless ECG sensors. Zhenzhen Tian ; Rendong Ying ; Peilin Liu ; Guoxing Wang ; Yong Lian Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3543-3546. PubMed ID: 28269063 [TBL] [Abstract][Full Text] [Related]
31. Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. Dotsinsky I; Stoyanov T J Med Eng Technol; 2004; 28(4):178-80. PubMed ID: 15371008 [TBL] [Abstract][Full Text] [Related]
32. Baseline wander and power-line interference elimination of ECG signals using efficient signal-piloted filtering. Mian Qaisar S Healthc Technol Lett; 2020 Aug; 7(4):114-118. PubMed ID: 32983548 [TBL] [Abstract][Full Text] [Related]
33. Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals. Aboutabikh K; Aboukerdah N Comput Biol Med; 2015 Jul; 62():1-13. PubMed ID: 25912983 [TBL] [Abstract][Full Text] [Related]
34. Use of high-pass filtering to detect late potentials in the signal-averaged ECG. Lander P; Berbari EJ J Electrocardiol; 1989; 22 Suppl():7-12. PubMed ID: 2614317 [TBL] [Abstract][Full Text] [Related]
35. Component wave delineation of ECG by filtering in the Fourier domain. Murthy IS; Niranjan UC Med Biol Eng Comput; 1992 Mar; 30(2):169-76. PubMed ID: 1453782 [TBL] [Abstract][Full Text] [Related]
36. Simulation of anteroseptal myocardial infarction by electrocardiographic filters. Burri H; Sunthorn H; Shah D J Electrocardiol; 2006 Jul; 39(3):253-8. PubMed ID: 16777511 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of novel ECG signal processing on quantification of transient ischemia and baseline wander suppression. Kostic MN; Fakhar S; Foxall T; Drakulic BS; Krucoff MW Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2199-202. PubMed ID: 18002426 [TBL] [Abstract][Full Text] [Related]
38. Impact of the high-frequency cutoff of bandpass filtering on ECG quality and clinical interpretation: A comparison between 40Hz and 150Hz cutoff in a surgical preoperative adult outpatient population. Ricciardi D; Cavallari I; Creta A; Di Giovanni G; Calabrese V; Di Belardino N; Mega S; Colaiori I; Ragni L; Proscia C; Nenna A; Di Sciascio G J Electrocardiol; 2016; 49(5):691-5. PubMed ID: 27498055 [TBL] [Abstract][Full Text] [Related]
39. Design of wavelet-based ECG detector for implantable cardiac pacemakers. Min YJ; Kim HK; Kang YR; Kim GS; Park J; Kim SW IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):426-36. PubMed ID: 23893202 [TBL] [Abstract][Full Text] [Related]
40. Real time microprocessor-based 50 Hz notch filter for ECG. Choy TT; Leung PM J Biomed Eng; 1988 May; 10(3):285-8. PubMed ID: 3392981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]