BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37694973)

  • 1. Transposable Elements Are Co-opted as Oncogenic Regulatory Elements by Lineage-Specific Transcription Factors in Prostate Cancer.
    Grillo G; Keshavarzian T; Linder S; Arlidge C; Mout L; Nand A; Teng M; Qamra A; Zhou S; Kron KJ; Murison A; Hawley JR; Fraser M; van der Kwast TH; Raj GV; He HH; Zwart W; Lupien M
    Cancer Discov; 2023 Nov; 13(11):2470-2487. PubMed ID: 37694973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs.
    Glinsky GV
    Genome Biol Evol; 2015 May; 7(6):1432-54. PubMed ID: 25956794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-associated chromatin variants uncover the oncogenic role of transposable elements.
    Grillo G; Lupien M
    Curr Opin Genet Dev; 2022 Jun; 74():101911. PubMed ID: 35487182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous retroviruses co-opted as divergently transcribed regulatory elements shape the regulatory landscape of embryonic stem cells.
    Bakoulis S; Krautz R; Alcaraz N; Salvatore M; Andersson R
    Nucleic Acids Res; 2022 Feb; 50(4):2111-2127. PubMed ID: 35166831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells.
    Taube JH; Allton K; Duncan SA; Shen L; Barton MC
    J Biol Chem; 2010 May; 285(21):16135-44. PubMed ID: 20348100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum.
    Hackett JA; Kobayashi T; Dietmann S; Surani MA
    Stem Cell Reports; 2017 Jun; 8(6):1645-1658. PubMed ID: 28591649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells.
    Todd CD; Deniz Ö; Taylor D; Branco MR
    Elife; 2019 Apr; 8():. PubMed ID: 31012843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic features underlie the co-option of SVA transposons as cis-regulatory elements in human pluripotent stem cells.
    Barnada SM; Isopi A; Tejada-Martinez D; Goubert C; Patoori S; Pagliaroli L; Tracewell M; Trizzino M
    PLoS Genet; 2022 Jun; 18(6):e1010225. PubMed ID: 35704668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the mammalian transcription factor binding repertoire via transposable elements.
    Bourque G; Leong B; Vega VB; Chen X; Lee YL; Srinivasan KG; Chew JL; Ruan Y; Wei CL; Ng HH; Liu ET
    Genome Res; 2008 Nov; 18(11):1752-62. PubMed ID: 18682548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis.
    Simmonds P; Loomis E; Curry E
    Genome Med; 2017 Jun; 9(1):54. PubMed ID: 28592290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable elements have rewired the core regulatory network of human embryonic stem cells.
    Kunarso G; Chia NY; Jeyakani J; Hwang C; Lu X; Chan YS; Ng HH; Bourque G
    Nat Genet; 2010 Jul; 42(7):631-4. PubMed ID: 20526341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pluripotency Stemness and Cancer: More Questions than Answers.
    Hatina J; Kripnerová M; Houdek Z; Pešta M; Tichánek F
    Adv Exp Med Biol; 2022; 1376():77-100. PubMed ID: 34725790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate-specific transposable elements shape transcriptional networks during human development.
    Pontis J; Pulver C; Playfoot CJ; Planet E; Grun D; Offner S; Duc J; Manfrin A; Lutolf MP; Trono D
    Nat Commun; 2022 Nov; 13(1):7178. PubMed ID: 36418324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells.
    Bae KM; Su Z; Frye C; McClellan S; Allan RW; Andrejewski JT; Kelley V; Jorgensen M; Steindler DA; Vieweg J; Siemann DW
    J Urol; 2010 May; 183(5):2045-53. PubMed ID: 20303530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage.
    Carey TS; Choi I; Wilson CA; Floer M; Knott JG
    Stem Cells Dev; 2014 Feb; 23(3):219-29. PubMed ID: 24059348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MUC1-C Activates the BAF (mSWI/SNF) Complex in Prostate Cancer Stem Cells.
    Hagiwara M; Yasumizu Y; Yamashita N; Rajabi H; Fushimi A; Long MD; Li W; Bhattacharya A; Ahmad R; Oya M; Liu S; Kufe D
    Cancer Res; 2021 Feb; 81(4):1111-1122. PubMed ID: 33323379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factors for the modulation of pluripotency and reprogramming.
    Heng JC; Orlov YL; Ng HH
    Cold Spring Harb Symp Quant Biol; 2010; 75():237-44. PubMed ID: 21047904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.
    Murakami K; Günesdogan U; Zylicz JJ; Tang WWC; Sengupta R; Kobayashi T; Kim S; Butler R; Dietmann S; Surani MA
    Nature; 2016 Jan; 529(7586):403-407. PubMed ID: 26751055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival.
    Tan PY; Chang CW; Chng KR; Wansa KD; Sung WK; Cheung E
    Mol Cell Biol; 2012 Jan; 32(2):399-414. PubMed ID: 22083957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.