BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37695101)

  • 1. Approaches for timeline reductions in pathogenesis studies using genetically modified mice.
    Skavicus S; Heaton NS
    Microbiol Spectr; 2023 Sep; 11(5):e0252123. PubMed ID: 37695101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotyping Protocols for Genetically Engineered Mice.
    Limaye A; Cho K; Hall B; Khillan JS; Kulkarni AB
    Curr Protoc; 2023 Nov; 3(11):e929. PubMed ID: 37984376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a Genetic Scalpel for the Treatment of Cancer: A Translational Narrative Review.
    Mondal R; Brahmbhatt N; Sandhu SK; Shah H; Vashi M; Gandhi SK; Patel P
    Cureus; 2023 Dec; 15(12):e50031. PubMed ID: 38186450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Mouse Model (KI and CKO) via Easi-CRISPR.
    Shola DTN; Yang C; Han C; Norinsky R; Peraza RD
    Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of genome-wide protein tagging cell and mouse libraries.
    Jiang J; Zhao AQ; Xie T; Chen SW; Li JS
    Yi Chuan; 2021 Jul; 43(7):704-714. PubMed ID: 34284985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.
    Byambaa S; Uosaki H; Hara H; Nagao Y; Abe T; Shibata H; Nureki O; Ohmori T; Hanazono Y
    Exp Anim; 2020 Apr; 69(2):189-198. PubMed ID: 31801915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis.
    Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches.
    Motta BM; Pramstaller PP; Hicks AA; Rossini A
    Stem Cells Int; 2017; 2017():8960236. PubMed ID: 29434642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?
    Zuberi A; Lutz C
    ILAR J; 2016 Dec; 57(2):178-185. PubMed ID: 28053071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology.
    Hansmeier NR; Widdershooven PJM; Khani S; Kornfeld JW
    Noncoding RNA; 2019 Jan; 5(1):. PubMed ID: 30678101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of CRISPR/Cas9 for the Modification of the Mouse Genome.
    Klimke A; Güttler S; Kuballa P; Janzen S; Ortmann S; Flora A
    Methods Mol Biol; 2019; 1953():213-230. PubMed ID: 30912024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer.
    Talukder P; Chanda S; Chaudhuri B; Choudhury SR; Saha D; Dash S; Banerjee A; Chatterjee B
    Appl Biochem Biotechnol; 2023 Sep; ():. PubMed ID: 37737443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver.
    Kaltenbacher T; Löprich J; Maresch R; Weber J; Müller S; Oellinger R; Groß N; Griger J; de Andrade Krätzig N; Avramopoulos P; Ramanujam D; Brummer S; Widholz SA; Bärthel S; Falcomatà C; Pfaus A; Alnatsha A; Mayerle J; Schmidt-Supprian M; Reichert M; Schneider G; Ehmer U; Braun CJ; Saur D; Engelhardt S; Rad R
    Nat Protoc; 2022 Apr; 17(4):1142-1188. PubMed ID: 35288718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.