BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37695253)

  • 1. An Inverse-Designed Nanophotonic Interface for Excitons in Atomically Thin Materials.
    Gelly RJ; White AD; Scuri G; Liao X; Ahn GH; Deng B; Watanabe K; Taniguchi T; Vučković J; Park H
    Nano Lett; 2023 Sep; 23(18):8779-8786. PubMed ID: 37695253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexagonal Boron Nitride Slab Waveguides for Enhanced Spectroscopy of Encapsulated 2D Materials.
    LaGasse SW; Proscia NV; Cress CD; Fonseca JJ; Cunningham PD; Janzen E; Edgar JH; Pennachio DJ; Culbertson J; Zalalutdinov M; Robinson JT
    Adv Mater; 2024 Feb; 36(7):e2309777. PubMed ID: 37992676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride.
    Fröch JE; Li C; Chen Y; Toth M; Kianinia M; Kim S; Aharonovich I
    Small; 2022 Jan; 18(2):e2104805. PubMed ID: 34837313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic crystal cavities from hexagonal boron nitride.
    Kim S; Fröch JE; Christian J; Straw M; Bishop J; Totonjian D; Watanabe K; Taniguchi T; Toth M; Aharonovich I
    Nat Commun; 2018 Jul; 9(1):2623. PubMed ID: 29976925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Photon Sources in Atomically Thin Materials.
    Toth M; Aharonovich I
    Annu Rev Phys Chem; 2019 Jun; 70():123-142. PubMed ID: 30735459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities.
    Fröch JE; Kim S; Mendelson N; Kianinia M; Toth M; Aharonovich I
    ACS Nano; 2020 Jun; 14(6):7085-7091. PubMed ID: 32401482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeform Electronic and Photonic Landscapes in Hexagonal Boron Nitride.
    Lassaline N; Thureja D; Chervy T; Petter D; Murthy PA; Knoll AW; Norris DJ
    Nano Lett; 2021 Oct; 21(19):8175-8181. PubMed ID: 34591490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalizing nanophotonic structures with 2D van der Waals materials.
    Meng Y; Zhong H; Xu Z; He T; Kim JS; Han S; Kim S; Park S; Shen Y; Gong M; Xiao Q; Bae SH
    Nanoscale Horiz; 2023 Sep; 8(10):1345-1365. PubMed ID: 37608742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.
    Zhou Y; Scuri G; Wild DS; High AA; Dibos A; Jauregui LA; Shu C; De Greve K; Pistunova K; Joe AY; Taniguchi T; Watanabe K; Kim P; Lukin MD; Park H
    Nat Nanotechnol; 2017 Sep; 12(9):856-860. PubMed ID: 28650440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators.
    Parto K; Azzam SI; Lewis N; Patel SD; Umezawa S; Watanabe K; Taniguchi T; Moody G
    Nano Lett; 2022 Dec; 22(23):9748-9756. PubMed ID: 36318636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocavity-Mediated Purcell Enhancement of Er in TiO
    Ji C; Solomon MT; Grant GD; Tanaka K; Hua M; Wen J; Seth SK; Horn CP; Masiulionis I; Singh MK; Sullivan SE; Heremans FJ; Awschalom DD; Guha S; Dibos AM
    ACS Nano; 2024 Apr; 18(14):9929-9941. PubMed ID: 38533847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Fabrication of a Coupled Cavity-Emitter System in Hexagonal Boron Nitride.
    Nonahal M; Horder J; Gale A; Ding L; Li C; Hennessey M; Ha ST; Toth M; Aharonovich I
    Nano Lett; 2023 Jul; 23(14):6645-6650. PubMed ID: 37418703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlocal Exciton-Photon Interactions in Hybrid High-Q Beam Nanocavities with Encapsulated MoS_{2} Monolayers.
    Qian C; Villafañe V; Soubelet P; Hötger A; Taniguchi T; Watanabe K; Wilson NP; Stier AV; Holleitner AW; Finley JJ
    Phys Rev Lett; 2022 Jun; 128(23):237403. PubMed ID: 35749182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tantalum pentoxide nanophotonic circuits for integrated quantum technology.
    Splitthoff L; Wolff MA; Grottke T; Schuck C
    Opt Express; 2020 Apr; 28(8):11921-11932. PubMed ID: 32403693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures.
    Paik EY; Zhang L; Burg GW; Gogna R; Tutuc E; Deng H
    Nature; 2019 Dec; 576(7785):80-84. PubMed ID: 31768043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal boron nitride nanophotonics: a record-breaking material for the ultraviolet and visible spectral ranges.
    Grudinin DV; Ermolaev GA; Baranov DG; Toksumakov AN; Voronin KV; Slavich AS; Vyshnevyy AA; Mazitov AB; Kruglov IA; Ghazaryan DA; Arsenin AV; Novoselov KS; Volkov VS
    Mater Horiz; 2023 Jul; 10(7):2427-2435. PubMed ID: 37139604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.