These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37695567)

  • 1. Linear Scaling Calculations of Excitation Energies with Active-Space Particle-Particle Random-Phase Approximation.
    Li J; Yu J; Chen Z; Yang W
    J Phys Chem A; 2023 Sep; 127(37):7811-7822. PubMed ID: 37695567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate and efficient calculation of excitation energies with the active-space particle-particle random phase approximation.
    Zhang D; Yang W
    J Chem Phys; 2016 Oct; 145(14):144105. PubMed ID: 27782522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renormalized Singles Green's Function in the T-Matrix Approximation for Accurate Quasiparticle Energy Calculation.
    Li J; Chen Z; Yang W
    J Phys Chem Lett; 2021 Jul; 12(26):6203-6210. PubMed ID: 34196553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.
    Yang Y; Peng D; Lu J; Yang W
    J Chem Phys; 2014 Sep; 141(12):124104. PubMed ID: 25273409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems.
    Send R; Kaila VR; Sundholm D
    J Chem Phys; 2011 Jun; 134(21):214114. PubMed ID: 21663351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensor hypercontracted ppRPA: reducing the cost of the particle-particle random phase approximation from O(r(6)) to O(r(4)).
    Shenvi N; van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 Jul; 141(2):024119. PubMed ID: 25028011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.
    Zhang D; Su NQ; Yang W
    J Phys Chem Lett; 2017 Jul; 8(14):3223-3227. PubMed ID: 28654275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transfer excitation energies from ground state density functional theory calculations.
    Mei Y; Yang W
    J Chem Phys; 2019 Apr; 150(14):144109. PubMed ID: 30981264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.
    Yang Y; van Aggelen H; Yang W
    J Chem Phys; 2013 Dec; 139(22):224105. PubMed ID: 24329054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx).
    Baudin P; Kristensen K
    J Chem Phys; 2017 Jun; 146(21):214114. PubMed ID: 28595400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.
    Heßelmann A
    J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural triple excitations in local coupled cluster calculations with pair natural orbitals.
    Riplinger C; Sandhoefer B; Hansen A; Neese F
    J Chem Phys; 2013 Oct; 139(13):134101. PubMed ID: 24116546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies.
    Voora VK; Galhenage R; Hemminger JC; Furche F
    J Chem Phys; 2019 Oct; 151(13):134106. PubMed ID: 31594336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated natural transition orbitals for core excitation energies in multilevel coupled cluster models.
    Høyvik IM; Myhre RH; Koch H
    J Chem Phys; 2017 Apr; 146(14):144109. PubMed ID: 28411605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient implementation of restricted active space configuration interaction with the hole and particle approximation.
    Casanova D
    J Comput Chem; 2013 Apr; 34(9):720-30. PubMed ID: 23224785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.