These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37695670)

  • 21. Azo Compounds as Active Materials of Energy Storage Systems.
    Shimizu T; Tanifuji N; Yoshikawa H
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202206093. PubMed ID: 35718885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics?
    Ji L; Shi J; Wei J; Yu T; Huang W
    Adv Mater; 2020 Aug; 32(32):e1908015. PubMed ID: 32583945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities.
    Wang Y; Chu F; Zeng J; Wang Q; Naren T; Li Y; Cheng Y; Lei Y; Wu F
    ACS Nano; 2021 Jan; 15(1):210-239. PubMed ID: 33405889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
    Burgess M; Moore JS; Rodríguez-López J
    Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion.
    Li Z; Gong L
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices.
    Liu T; Kavian R; Kim I; Lee SW
    J Phys Chem Lett; 2014 Dec; 5(24):4324-30. PubMed ID: 26273982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries.
    Wang Z; Gu S; Cao L; Kong L; Wang Z; Qin N; Li M; Luo W; Chen J; Wu S; Liu G; Yuan H; Bai Y; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):514-521. PubMed ID: 33326203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pulse Radiolysis Studies for Mechanism in Biochemical Redox Reactions.
    Kobayashi K
    Chem Rev; 2019 Mar; 119(6):4413-4462. PubMed ID: 30741537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries.
    Xu D; Liang M; Qi S; Sun W; Lv LP; Du FH; Wang B; Chen S; Wang Y; Yu Y
    ACS Nano; 2021 Jan; 15(1):47-80. PubMed ID: 33382596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
    Vlad A; Singh N; Melinte S; Gohy JF; Ajayan PM
    Sci Rep; 2016 Feb; 6():22194. PubMed ID: 26917470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries.
    Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational Construction of Yolk-Shell Bimetal-Modified Quinonyl-Rich Covalent Organic Polymers with Ultralong Lithium-Storage Mechanism.
    Cao Y; Sun W; Guo C; Zheng L; Yao M; Wang Y
    ACS Nano; 2022 Jun; 16(6):9830-9842. PubMed ID: 35658409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte.
    Chen K; Xue D
    Chem Rec; 2018 Mar; 18(3):282-292. PubMed ID: 28892248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-power electrochemical energy storage system employing stable radical pseudocapacitors.
    Maruyama H; Nakano H; Nakamoto M; Sekiguchi A
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1324-8. PubMed ID: 24352853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymers based on stable phenoxyl radicals for the use in organic radical batteries.
    Jähnert T; Häupler B; Janoschka T; Hager MD; Schubert US
    Macromol Rapid Commun; 2014 May; 35(9):882-7. PubMed ID: 24652613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuneable Redox Chemistry and Electrochromism of Persistent Symmetric and Asymmetric Azine Radical Cations.
    Werr M; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2019 Oct; 25(56):12981-12990. PubMed ID: 31306523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.