These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37695766)

  • 1. Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding.
    Tchounke B; Sanchez L; Bell JM; Cros D
    PLoS Comput Biol; 2023 Sep; 19(9):e1010290. PubMed ID: 37695766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).
    Kwong QB; Teh CK; Ong AL; Chew FT; Mayes S; Kulaveerasingam H; Tammi M; Yeoh SH; Appleton DR; Harikrishna JA
    BMC Genet; 2017 Dec; 18(1):107. PubMed ID: 29228905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs.
    He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S
    PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.).
    Cros D; Denis M; Sánchez L; Cochard B; Flori A; Durand-Gasselin T; Nouy B; Omoré A; Pomiès V; Riou V; Suryana E; Bouvet JM
    Theor Appl Genet; 2015 Mar; 128(3):397-410. PubMed ID: 25488416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic predictions improve clonal selection in oil palm (Elaeis guineensis Jacq.) hybrids.
    Nyouma A; Bell JM; Jacob F; Riou V; Manez A; Pomiès V; Nodichao L; Syahputra I; Affandi D; Cochard B; Durand-Gasselin T; Cros D
    Plant Sci; 2020 Oct; 299():110547. PubMed ID: 32900451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the accuracy of genomic predictions in an outcrossing species with hybrid cultivars between heterozygote parents: a case study of oil palm (Elaeis guineensis Jacq.).
    Nyouma A; Bell JM; Jacob F; Riou V; Manez A; Pomiès V; Domonhedo H; Arifiyanto D; Cochard B; Durand-Gasselin T; Cros D
    Mol Genet Genomics; 2022 Mar; 297(2):523-533. PubMed ID: 35166935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm.
    Cros D; Denis M; Bouvet JM; Sánchez L
    BMC Genomics; 2015 Aug; 16(1):651. PubMed ID: 26318484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Genetic Gain in Allogamous Crops
    Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD
    Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Methods and applications of animal genomic mating].
    He J; B Lopes F; Wu XL
    Yi Chuan; 2019 Jun; 41(6):486-493. PubMed ID: 31257197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomics, genomics of oil palm (
    Babu BK; Mathur RK; Anitha P; Ravichandran G; Bhagya HP
    Physiol Mol Biol Plants; 2021 Mar; 27(3):587-604. PubMed ID: 33854286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement.
    Zhao F; Zhang P; Wang X; Akdemir D; Garrick D; He J; Wang L
    J Anim Sci Biotechnol; 2023 Jun; 14(1):87. PubMed ID: 37309010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
    Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC
    Front Genet; 2020; 11():251. PubMed ID: 32373152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values.
    Lillehammer M; Meuwissen TH; Sonesson AK
    Genet Sel Evol; 2013 Oct; 45(1):39. PubMed ID: 24127852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding.
    Sekine D; Yabe S
    Breed Sci; 2020 Dec; 70(5):594-604. PubMed ID: 33603556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.
    Lin Z; Shi F; Hayes BJ; Daetwyler HD
    Theor Appl Genet; 2017 May; 130(5):969-980. PubMed ID: 28364262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.