BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37695856)

  • 1. The microbial-derived bile acid lithocholate and its epimers inhibit
    Kisthardt SC; Thanissery R; Pike CM; Foley MH; Theriot CM
    J Bacteriol; 2023 Sep; 205(9):e0018023. PubMed ID: 37695856
    [No Abstract]   [Full Text] [Related]  

  • 2. The microbial derived bile acid lithocholate and its epimers inhibit
    Kisthardt SC; Thanissery R; Pike CM; Foley MH; Theriot CM
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.
    Thanissery R; Winston JA; Theriot CM
    Anaerobe; 2017 Jun; 45():86-100. PubMed ID: 28279860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tauroursodeoxycholic Acid Inhibits Clostridioides difficile Toxin-Induced Apoptosis.
    Pike CM; Tam J; Melnyk RA; Theriot CM
    Infect Immun; 2022 Aug; 90(8):e0015322. PubMed ID: 35862710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine.
    Theriot CM; Bowman AA; Young VB
    mSphere; 2016; 1(1):. PubMed ID: 27239562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Gut Bacterial Community Potentiates Clostridioides difficile Infection Severity.
    Lesniak NA; Schubert AM; Flynn KJ; Leslie JL; Sinani H; Bergin IL; Young VB; Schloss PD
    mBio; 2022 Aug; 13(4):e0118322. PubMed ID: 35856563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-Dependent Inhibition of Clostridioides difficile by Commensal
    Reed AD; Nethery MA; Stewart A; Barrangou R; Theriot CM
    J Bacteriol; 2020 May; 202(11):. PubMed ID: 32179626
    [No Abstract]   [Full Text] [Related]  

  • 8. Gut associated metabolites and their roles in
    Aguirre AM; Sorg JA
    Gut Microbes; 2022; 14(1):2094672. PubMed ID: 35793402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids.
    Winston JA; Rivera AJ; Cai J; Thanissery R; Montgomery SA; Patterson AD; Theriot CM
    Infect Immun; 2020 May; 88(6):. PubMed ID: 32205405
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of a Bile Acid-Binding Transcription Factor in
    Forster ER; Yang X; Tai AK; Hang HC; Shen A
    ACS Chem Biol; 2022 Nov; 17(11):3086-3099. PubMed ID: 36279369
    [No Abstract]   [Full Text] [Related]  

  • 11. The microbial metabolite urolithin A reduces
    Ghosh S; Erickson D; Chua MJ; Collins J; Jala VR
    mSystems; 2024 Feb; 9(2):e0125523. PubMed ID: 38193707
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of the gut microbiome in colonization resistance and recurrent
    Seekatz AM; Safdar N; Khanna S
    Therap Adv Gastroenterol; 2022; 15():17562848221134396. PubMed ID: 36425405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review and Commentary on the Importance of Bile Acids in the Life Cycle of Clostridioides difficile in Children and Adults.
    Faden H
    J Pediatric Infect Dis Soc; 2021 May; 10(5):659-664. PubMed ID: 33626138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host.
    Wexler AG; Guiberson ER; Beavers WN; Shupe JA; Washington MK; Lacy DB; Caprioli RM; Spraggins JM; Skaar EP
    Cell Rep; 2021 Sep; 36(10):109683. PubMed ID: 34496241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection.
    Wang S; Heuler J; Wickramage I; Sun X
    Microbiol Spectr; 2022 Apr; 10(2):e0178821. PubMed ID: 35315695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.
    Winston JA; Theriot CM
    Anaerobe; 2016 Oct; 41():44-50. PubMed ID: 27163871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Aniline-Substituted Bile Salt Analog Protects both Mice and Hamsters from Multiple Clostridioides difficile Strains.
    Phan JR; Do DM; Truong MC; Ngo C; Phan JH; Sharma SK; Schilke A; Mefferd CC; Villarama JV; Lai D; Consul A; Hedlund BP; Firestine SM; Abel-Santos E
    Antimicrob Agents Chemother; 2022 Jan; 66(1):e0143521. PubMed ID: 34780262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota.
    McDonald JAK; Mullish BH; Pechlivanis A; Liu Z; Brignardello J; Kao D; Holmes E; Li JV; Clarke TB; Thursz MR; Marchesi JR
    Gastroenterology; 2018 Nov; 155(5):1495-1507.e15. PubMed ID: 30025704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shengjiang Xiexin decoction mitigates murine Clostridium difficile infection through modulation of the gut microbiota and bile acid metabolism.
    Yu XH; Lv Z; Zhang CE; Gao Y; Li H; Ma XJ; Ma ZJ; Su JR; Huang LQ
    J Ethnopharmacol; 2024 Feb; 320():117384. PubMed ID: 37925000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Destination and Specific Impact of Different Bile Acids in the Intestinal Pathogen
    Metzendorf NG; Lange LM; Lainer N; Schlüter R; Dittmann S; Paul LS; Troitzsch D; Sievers S
    Front Microbiol; 2022; 13():814692. PubMed ID: 35401433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.