These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37695860)

  • 1. Optimal control and cost-effectiveness analysis for leptospirosis epidemic.
    Engida HA; Theuri DM; Gathungu DK; Gachohi J
    J Biol Dyn; 2023 Dec; 17(1):2248178. PubMed ID: 37695860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal control and cost-effectiveness analysis for the human melioidosis model.
    Engida HA; Gathungu DK; Ferede MM; Belay MA; Kawe PC; Mataru B
    Heliyon; 2024 Feb; 10(4):e26487. PubMed ID: 38434022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal control model with cost effectiveness analysis of Maize streak virus disease in maize plant.
    Alemneh HT; Kassa AS; Godana AA
    Infect Dis Model; 2021; 6():169-182. PubMed ID: 33474519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal control and cost-effectiveness analysis of age-structured malaria model with asymptomatic carrier and temperature variability.
    Kalula A; Mureithi E; Marijani T; Mbalawata I
    J Biol Dyn; 2023 Dec; 17(1):2199766. PubMed ID: 37053493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal control and cost effectiveness analysis for Newcastle disease eco-epidemiological model in Tanzania.
    Hugo A; Makinde OD; Kumar S; Chibwana FF
    J Biol Dyn; 2017 Dec; 11(1):190-209. PubMed ID: 27874314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and optimal control of pneumonia disease with cost-effective strategies.
    Tilahun GT; Makinde OD; Malonza D
    J Biol Dyn; 2017 Aug; 11(sup2):400-426. PubMed ID: 28613986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control strategies for dengue fever spread in Johor, Malaysia.
    Abidemi A; Aziz NAB
    Comput Methods Programs Biomed; 2020 Nov; 196():105585. PubMed ID: 32554024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Control of Shigellosis with Cost-Effective Strategies.
    Edward S; Shaban N; Mureithi E
    Comput Math Methods Med; 2020; 2020():9732687. PubMed ID: 32908585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-region discrete time mathematical modeling of the dynamics of Covid-19 virus propagation using optimal control.
    Khajji B; Kada D; Balatif O; Rachik M
    J Appl Math Comput; 2020; 64(1-2):255-281. PubMed ID: 32390786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal control and comprehensive cost-effectiveness analysis for COVID-19.
    Asamoah JKK; Okyere E; Abidemi A; Moore SE; Sun GQ; Jin Z; Acheampong E; Gordon JF
    Results Phys; 2022 Feb; 33():105177. PubMed ID: 35070649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Implementation of Intervention to Control the Self-harm Epidemic.
    Kim BN; Masud MA; Kim Y
    Osong Public Health Res Perspect; 2014 Dec; 5(6):315-23. PubMed ID: 25562039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale application of highly-diluted bacteria for Leptospirosis epidemic control.
    Bracho G; Varela E; Fernández R; Ordaz B; Marzoa N; Menéndez J; García L; Gilling E; Leyva R; Rufín R; de la Torre R; Solis RL; Batista N; Borrero R; Campa C
    Homeopathy; 2010 Jul; 99(3):156-66. PubMed ID: 20674839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Control of Mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with Cost-effectiveness.
    Kouidere A; Youssoufi LE; Ferjouchia H; Balatif O; Rachik M
    Chaos Solitons Fractals; 2021 Apr; 145():110777. PubMed ID: 33613000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of recruitment and industrial human resources management for optimal productivity in the presence of the HIV/AIDS epidemic.
    Okosun KO; Makinde OD; Takaidza I
    J Biol Phys; 2013 Jan; 39(1):99-121. PubMed ID: 23860836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of infectious density-induced additional screening and treatment saturation on COVID-19: Modeling and cost-effective optimal control.
    Lamba S; Das T; Srivastava PK
    Infect Dis Model; 2024 Jun; 9(2):569-600. PubMed ID: 38558959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SAITS epidemic spreading model and its combinational optimal suppression control.
    Ding W; Ding L; Kong Z; Liu F
    Math Biosci Eng; 2023 Jan; 20(2):3342-3354. PubMed ID: 36899584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Combinations of Control Strategies and Cost-Effectiveness Analysis of Dynamics of Endemic Malaria Transmission Model.
    Edossa DG; Wedajo AG; Koya PR
    Comput Math Methods Med; 2023; 2023():7677951. PubMed ID: 37284173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and cost-effectiveness.
    Kouidere A; Kada D; Balatif O; Rachik M; Naim M
    Chaos Solitons Fractals; 2021 Jan; 142():110438. PubMed ID: 33519112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional optimal control problem for an age-structured model of COVID-19 transmission.
    Khajji B; Kouidere A; Elhia M; Balatif O; Rachik M
    Chaos Solitons Fractals; 2021 Feb; 143():110625. PubMed ID: 33519119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal control for SIRC epidemic outbreak.
    Iacoviello D; Stasio N
    Comput Methods Programs Biomed; 2013 Jun; 110(3):333-42. PubMed ID: 23399104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.