These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37695975)

  • 1. Reinforced Labels: Multi-Agent Deep Reinforcement Learning for Point-Feature Label Placement.
    Bobak P; Cmolik L; Cadik M
    IEEE Trans Vis Comput Graph; 2024 Sep; 30(9):5908-5922. PubMed ID: 37695975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RL-LABEL: A Deep Reinforcement Learning Approach Intended for AR Label Placement in Dynamic Scenarios.
    Chen Z; Chiappalupi D; Lin T; Yang Y; Beyer J; Pfister H
    IEEE Trans Vis Comput Graph; 2023 Oct; PP():. PubMed ID: 37871050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-framework for multi-label active learning based on deep reinforcement learning.
    Chen S; Wang R; Lu J
    Neural Netw; 2023 May; 162():258-270. PubMed ID: 36913822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Labels: Point-Feature Labeling on GPU.
    Pavlovec V; Cmolik L
    IEEE Trans Vis Comput Graph; 2022 Jan; 28(1):604-613. PubMed ID: 34587076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample-efficient multi-agent reinforcement learning with masked reconstruction.
    Kim JI; Lee YJ; Heo J; Park J; Kim J; Lim SR; Jeong J; Kim SB
    PLoS One; 2023; 18(9):e0291545. PubMed ID: 37708154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning.
    Hu T; Luo B; Yang C; Huang T
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12098-12112. PubMed ID: 37285257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A localization strategy combined with transfer learning for image annotation.
    Chen Z; Rajamanickam L; Cao J; Zhao A; Hu X
    PLoS One; 2021; 16(12):e0260758. PubMed ID: 34879097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning with Automated Label Extraction from Clinical Reports Accurately Classifies 3D MRI Brain Volumes.
    Stember JN; Shalu H
    J Digit Imaging; 2022 Oct; 35(5):1143-1152. PubMed ID: 35562633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decentralized multi-agent reinforcement learning based on best-response policies.
    Gabler V; Wollherr D
    Front Robot AI; 2024; 11():1229026. PubMed ID: 38690119
    [No Abstract]   [Full Text] [Related]  

  • 17. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlocal atlas-guided multi-channel forest learning for human brain labeling.
    Ma G; Gao Y; Wu G; Wu L; Shen D
    Med Phys; 2016 Feb; 43(2):1003-19. PubMed ID: 26843260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel multi-task learning network for skin lesion classification based on multi-modal clues and label-level fusion.
    Lin Q; Guo X; Feng B; Guo J; Ni S; Dong H
    Comput Biol Med; 2024 Jun; 175():108549. PubMed ID: 38704901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.