These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37696137)
1. Loss of cyclophilin D prolyl isomerase activity desensitizes mitochondrial permeability transition pore opening in isolated cardiac mitochondria, but does not protect in myocardial ischemia-reperfusion injury. Casin KM; Bustamante M; Amanakis G; Sun J; Liu C; Kitsis RN; Murphy E J Mol Cell Cardiol; 2023 Oct; 183():67-69. PubMed ID: 37696137 [No Abstract] [Full Text] [Related]
2. Nanoparticle-Mediated Simultaneous Targeting of Mitochondrial Injury and Inflammation Attenuates Myocardial Ischemia-Reperfusion Injury. Ikeda G; Matoba T; Ishikita A; Nagaoka K; Nakano K; Koga JI; Tsutsui H; Egashira K J Am Heart Assoc; 2021 Jun; 10(12):e019521. PubMed ID: 34056918 [TBL] [Abstract][Full Text] [Related]
3. The mitochondrial ATP synthase is a negative regulator of the mitochondrial permeability transition pore. Pekson R; Liang FG; Axelrod JL; Lee J; Qin D; Wittig AJH; Paulino VM; Zheng M; Peixoto PM; Kitsis RN Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2303713120. PubMed ID: 38091291 [TBL] [Abstract][Full Text] [Related]
5. Small-Molecule Inhibitors of Cyclophilins Block Opening of the Mitochondrial Permeability Transition Pore and Protect Mice From Hepatic Ischemia/Reperfusion Injury. Panel M; Ruiz I; Brillet R; Lafdil F; Teixeira-Clerc F; Nguyen CT; Calderaro J; Gelin M; Allemand F; Guichou JF; Ghaleh B; Ahmed-Belkacem A; Morin D; Pawlotsky JM Gastroenterology; 2019 Nov; 157(5):1368-1382. PubMed ID: 31336123 [TBL] [Abstract][Full Text] [Related]
6. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. Nguyen TT; Stevens MV; Kohr M; Steenbergen C; Sack MN; Murphy E J Biol Chem; 2011 Nov; 286(46):40184-92. PubMed ID: 21930693 [TBL] [Abstract][Full Text] [Related]
7. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. Clarke SJ; McStay GP; Halestrap AP J Biol Chem; 2002 Sep; 277(38):34793-9. PubMed ID: 12095984 [TBL] [Abstract][Full Text] [Related]
8. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. Bernardi P; Di Lisa F J Mol Cell Cardiol; 2015 Jan; 78():100-6. PubMed ID: 25268651 [TBL] [Abstract][Full Text] [Related]
9. A Phenyl-Pyrrolidine Derivative Reveals a Dual Inhibition Mechanism of Myocardial Mitochondrial Permeability Transition Pore, Which Is Limited by Its Myocardial Distribution. Panel M; Ahmed-Belkacem A; Ruiz I; Guichou JF; Pawlotsky JM; Ghaleh B; Morin D J Pharmacol Exp Ther; 2021 Mar; 376(3):348-357. PubMed ID: 33303698 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Boengler K; Hilfiker-Kleiner D; Heusch G; Schulz R Basic Res Cardiol; 2010 Nov; 105(6):771-85. PubMed ID: 20960209 [TBL] [Abstract][Full Text] [Related]
11. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Amanakis G; Sun J; Fergusson MM; McGinty S; Liu C; Molkentin JD; Murphy E Cardiovasc Res; 2021 Jan; 117(1):212-223. PubMed ID: 32129829 [TBL] [Abstract][Full Text] [Related]
12. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. Schriewer JM; Peek CB; Bass J; Schumacker PT J Am Heart Assoc; 2013 Apr; 2(2):e000159. PubMed ID: 23598272 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Javadov S; Jang S; Parodi-Rullán R; Khuchua Z; Kuznetsov AV Cell Mol Life Sci; 2017 Aug; 74(15):2795-2813. PubMed ID: 28378042 [TBL] [Abstract][Full Text] [Related]
14. Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. Ananthakrishnan R; Kaneko M; Hwang YC; Quadri N; Gomez T; Li Q; Caspersen C; Ramasamy R Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H333-41. PubMed ID: 19060123 [TBL] [Abstract][Full Text] [Related]
15. Anastrozole-mediated modulation of mitochondrial activity by inhibition of mitochondrial permeability transition pore opening: an initial perspective. Kumar S; Choudhary N; Faruq M; Kumar A; Saran RK; Indercanti PK; Singh V; Sait H; Jaitley S; Valis M; Kuca K; Polipalli SK; Kumar M; Singh T; Suravajhala P; Sharma R; Kapoor S J Biomol Struct Dyn; 2023; 41(23):14063-14079. PubMed ID: 36815262 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial Cyclophilin D as a Potential Therapeutic Target for Ischemia-Induced Facial Palsy in Rats. Chen H; Liu C; Yin J; Chen Z; Xu J; Wang D; Zhu J; Zhang Z; Sun Y; Li A Cell Mol Neurobiol; 2015 Oct; 35(7):931-41. PubMed ID: 25820785 [TBL] [Abstract][Full Text] [Related]
17. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Lim SY; Davidson SM; Mocanu MM; Yellon DM; Smith CC Cardiovasc Drugs Ther; 2007 Dec; 21(6):467-9. PubMed ID: 17965927 [TBL] [Abstract][Full Text] [Related]
18. Phosphate is not an absolute requirement for the inhibitory effects of cyclosporin A or cyclophilin D deletion on mitochondrial permeability transition. McGee AM; Baines CP Biochem J; 2012 Apr; 443(1):185-91. PubMed ID: 22236255 [TBL] [Abstract][Full Text] [Related]
19. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Elrod JW; Molkentin JD Circ J; 2013; 77(5):1111-22. PubMed ID: 23538482 [TBL] [Abstract][Full Text] [Related]
20. Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Parks RJ; Menazza S; Holmström KM; Amanakis G; Fergusson M; Ma H; Aponte AM; Bernardi P; Finkel T; Murphy E Cardiovasc Res; 2019 Feb; 115(2):385-394. PubMed ID: 30165576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]