BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37696171)

  • 1. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid.
    Liu G; Ma L; Xi X; Nie Z
    Waste Manag; 2024 Apr; 178():105-114. PubMed ID: 38387254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes.
    Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries.
    Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances and challenges in anode graphite recycling from spent lithium-ion batteries.
    Niu B; Xiao J; Xu Z
    J Hazard Mater; 2022 Oct; 439():129678. PubMed ID: 36104906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries.
    Wang X; Zhou L; Li J; Han N; Li X; Liu G; Jia D; Ma Z; Song G; Zhu X; Peng Z; Zhang L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Flower-like MoS
    Lee YA; Jang KY; Yoo J; Yim K; Jung W; Jung KN; Yoo CY; Cho Y; Lee J; Ryu MH; Shin H; Lee K; Yoon H
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach.
    Gu K; Gao X; Chen Y; Qin W; Han J
    Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of single-crystal ternary cathode materials
    Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W
    Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and Eco-Friendly Fabrication of Electrode Materials and Their Performance in High-Voltage Lithium-Ion Batteries.
    Barbosa L; Luna-Lama F; González Peña Y; Caballero A
    ChemSusChem; 2020 Feb; 13(4):838-849. PubMed ID: 31830369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental-friendly and effectively regenerate anode material of spent lithium-ion batteries into high-performance P-doped graphite.
    Yang X; Zhen H; Liu H; Chen C; Zhong Y; Yang X; Wang X; Yang L
    Waste Manag; 2023 Apr; 161():52-60. PubMed ID: 36863210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.