These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37696181)

  • 1. A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency.
    Liu Y; Fan R; Yi J; Cui Q; Cui C
    Comput Biol Med; 2023 Oct; 165():107476. PubMed ID: 37696181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.
    Xue L; Tang B; Chen W; Luo J
    J Chem Inf Model; 2019 Jan; 59(1):615-624. PubMed ID: 30485088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction.
    Li B; Ai D; Liu X
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency.
    Wan Y; Jiang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets.
    Ham DT; Browne TS; Banglorewala PN; Wilson TL; Michael RK; Gloor GB; Edgell DR
    Nat Commun; 2023 Sep; 14(1):5514. PubMed ID: 37679324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks.
    Zhang G; Zeng T; Dai Z; Dai X
    Comput Struct Biotechnol J; 2021; 19():1445-1457. PubMed ID: 33841753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network.
    Vinodkumar PK; Ozcinar C; Anbarjafari G
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34069050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning improves the ability of sgRNA off-target propensity prediction.
    Liu Q; Cheng X; Liu G; Li B; Liu X
    BMC Bioinformatics; 2020 Feb; 21(1):51. PubMed ID: 32041517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks.
    Niu M; Lin Y; Zou Q
    Plant Mol Biol; 2021 Mar; 105(4-5):483-495. PubMed ID: 33385273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage.
    Dimauro G; Barletta VS; Catacchio CR; Colizzi L; Maglietta R; Ventura M
    Comput Struct Biotechnol J; 2022; 20():5813-5823. PubMed ID: 36382194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks.
    Zhang G; Dai Z; Dai X
    Comput Struct Biotechnol J; 2020; 18():344-354. PubMed ID: 32123556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.