These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37696396)
1. Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion. Gholami H; Mohammadifar A; Golzari S; Song Y; Pradhan B Sci Total Environ; 2023 Dec; 904():166960. PubMed ID: 37696396 [TBL] [Abstract][Full Text] [Related]
2. An assessment of global land susceptibility to wind erosion based on deep-active learning modelling and interpretation techniques. Gholami H; Mohammadifar A; Song Y; Li Y; Rahmani P; Kaskaoutis DG; Panagos P; Borrelli P Sci Rep; 2024 Aug; 14(1):18951. PubMed ID: 39147802 [TBL] [Abstract][Full Text] [Related]
3. Stacking- and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence. Mohammadifar A; Gholami H; Golzari S Environ Sci Pollut Res Int; 2023 Feb; 30(10):26580-26595. PubMed ID: 36369445 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. Chen W; Lei X; Chakrabortty R; Chandra Pal S; Sahana M; Janizadeh S J Environ Manage; 2021 Apr; 284():112015. PubMed ID: 33515838 [TBL] [Abstract][Full Text] [Related]
5. Understanding the mechanism of gully erosion in the alpine region through an interpretable machine learning approach. Zhang W; Zhao Y; Zhang F; Shi X; Zeng C; Maerker M Sci Total Environ; 2024 Nov; 949():174949. PubMed ID: 39067585 [TBL] [Abstract][Full Text] [Related]
6. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Azareh A; Rahmati O; Rafiei-Sardooi E; Sankey JB; Lee S; Shahabi H; Ahmad BB Sci Total Environ; 2019 Mar; 655():684-696. PubMed ID: 30476849 [TBL] [Abstract][Full Text] [Related]
7. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Gayen A; Pourghasemi HR; Saha S; Keesstra S; Bai S Sci Total Environ; 2019 Jun; 668():124-138. PubMed ID: 30851678 [TBL] [Abstract][Full Text] [Related]
8. Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping flood risk. Mohammadifar A; Gholami H; Golzari S J Environ Manage; 2023 Nov; 345():118838. PubMed ID: 37595460 [TBL] [Abstract][Full Text] [Related]
9. Using an interpretable deep learning model for the prediction of riverine suspended sediment load. Mohammadi-Raigani Z; Gholami H; Mohamadifar A; Samani AN; Pradhan B Environ Sci Pollut Res Int; 2024 May; 31(22):32480-32493. PubMed ID: 38656723 [TBL] [Abstract][Full Text] [Related]
10. Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Arabameri A; Pradhan B; Rezaei K J Environ Manage; 2019 Feb; 232():928-942. PubMed ID: 33395761 [TBL] [Abstract][Full Text] [Related]
11. Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility. Band SS; Janizadeh S; Chandra Pal S; Saha A; Chakrabortty R; Shokri M; Mosavi A Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33008132 [TBL] [Abstract][Full Text] [Related]
12. Assessment of gully influencing factors and susceptibility using remote sensing-based frequency ratio method in Sunshui River Basin, Southwest China. Laraib S; Xiong D; Zhao D; Shrestha BR; Liu L; Qin X; Xie X; Rai DK; Zhang W Environ Monit Assess; 2024 Jul; 196(8):731. PubMed ID: 39001905 [TBL] [Abstract][Full Text] [Related]
13. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Garosi Y; Sheklabadi M; Conoscenti C; Pourghasemi HR; Van Oost K Sci Total Environ; 2019 May; 664():1117-1132. PubMed ID: 30901785 [TBL] [Abstract][Full Text] [Related]
14. An interpretable deep learning model to map land subsidence hazard. Rahmani P; Gholami H; Golzari S Environ Sci Pollut Res Int; 2024 Mar; 31(11):17448-17460. PubMed ID: 38340298 [TBL] [Abstract][Full Text] [Related]
15. Understanding land degradation induced by gully erosion from the perspective of different geoenvironmental factors. Jaafari A; Janizadeh S; Abdo HG; Mafi-Gholami D; Adeli B J Environ Manage; 2022 Aug; 315():115181. PubMed ID: 35500480 [TBL] [Abstract][Full Text] [Related]
16. Gully erosion mapping based on hydro-geomorphometric factors and geographic information system. Shirani K; Peyrowan H; Shadfar S; Asgari S Environ Monit Assess; 2023 May; 195(6):721. PubMed ID: 37226003 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. Kariminejad N; Hosseinalizadeh M; Pourghasemi HR; Bernatek-Jakiel A; Campetella G; Ownegh M Sci Total Environ; 2019 Aug; 677():281-298. PubMed ID: 31059872 [TBL] [Abstract][Full Text] [Related]
18. Optimizing machine learning algorithms for spatial prediction of gully erosion susceptibility with four training scenarios. Liu G; Arabameri A; Santosh M; Nalivan OA Environ Sci Pollut Res Int; 2023 Apr; 30(16):46979-46996. PubMed ID: 36735134 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Rahmati O; Tahmasebipour N; Haghizadeh A; Pourghasemi HR; Feizizadeh B Sci Total Environ; 2017 Feb; 579():913-927. PubMed ID: 27887837 [TBL] [Abstract][Full Text] [Related]
20. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Gholami H; Mohammadifar A Sci Rep; 2022 Nov; 12(1):19342. PubMed ID: 36369266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]