These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37696410)
61. [Performance and Factors Analysis of Sludge Dewatering in Different Wastewater Treatment Processes]. Liu JB; Li YM; Lü J; Wei YS; Yang M; Yu DW Huan Jing Ke Xue; 2015 Oct; 36(10):3794-800. PubMed ID: 26841614 [TBL] [Abstract][Full Text] [Related]
62. Dewatering performance of sewage sludge under pretreatment with modified corn-core powder. Guo Z; Ma L; Dai Q; Yang J; Ao R; Wang L Sci Total Environ; 2019 Sep; 684():402-412. PubMed ID: 31154213 [TBL] [Abstract][Full Text] [Related]
63. Coagulation/flocculation in dewatering of sludge: A review. Wei H; Gao B; Ren J; Li A; Yang H Water Res; 2018 Oct; 143():608-631. PubMed ID: 30031298 [TBL] [Abstract][Full Text] [Related]
64. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Du Q; Wei H; Li A; Yang H Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850 [TBL] [Abstract][Full Text] [Related]
65. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives. Hyrycz M; Ochowiak M; Krupińska A; Włodarczak S; Matuszak M Sci Total Environ; 2022 May; 820():153328. PubMed ID: 35074381 [TBL] [Abstract][Full Text] [Related]
66. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant. Lin Q; Peng H; Zhong S; Xiang J J Hazard Mater; 2015 Mar; 285():199-206. PubMed ID: 25497034 [TBL] [Abstract][Full Text] [Related]
67. Evaluation of the combined effect of sodium persulfate and thermal hydrolysis on sludge dewatering performance. Chen K; Liu J; Huang S; Mei M; Chen S; Wang T; Li J Environ Sci Pollut Res Int; 2021 Feb; 28(6):7586-7597. PubMed ID: 33037543 [TBL] [Abstract][Full Text] [Related]
68. Changing profiles of bound water content and distribution in the activated sludge treatment by NaCl addition and pH modification. He DQ; Zhang YJ; He CS; Yu HQ Chemosphere; 2017 Nov; 186():702-708. PubMed ID: 28820993 [TBL] [Abstract][Full Text] [Related]
69. Effects of alkalinity on interaction between EPS and hydroxy-aluminum with different speciation in wastewater sludge conditioning with aluminum based inorganic polymer flocculant. Zhang W; Tang M; Li D; Yang P; Xu S; Wang D J Environ Sci (China); 2021 Feb; 100():257-268. PubMed ID: 33279038 [TBL] [Abstract][Full Text] [Related]
70. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment. Guo J; Ma J Bioresour Technol; 2015 Nov; 196():736-40. PubMed ID: 26259686 [TBL] [Abstract][Full Text] [Related]
71. A comparison of oxidation and re-flocculation behaviors of Fe Ling X; Cai A; Chen M; Sun H; Xu S; Huang Z; Li X; Deng J Sci Total Environ; 2022 Nov; 847():157690. PubMed ID: 35905956 [TBL] [Abstract][Full Text] [Related]
72. Parametric and kinetic studies of activated sludge dewatering by cationic chitosan-like bioflocculant BF01314 produced from Citrobacter youngae. Mohamed Hatta NS; Lau SW; Chua HB; Takeo M; Sen TK; Mubarak NM; Khalid M; Zairin DA Environ Res; 2023 May; 224():115527. PubMed ID: 36822539 [TBL] [Abstract][Full Text] [Related]
73. Insights into the enhancement of waste activated sludge dewaterability using sodium dichloroisocyanurate and dodecyl dimethyl ammonium chloride: Performance, mechanism, and implication. Dong Y; Gu M; Yuan H; Zhu N Sci Total Environ; 2021 Jul; 778():146302. PubMed ID: 34030389 [TBL] [Abstract][Full Text] [Related]
74. Comprehensive investigation of the relationship between organic content and waste activated sludge dewaterability. Wang HF; Hu H; Wang HJ; Bai YN; Shen XF; Zhang W; Zeng RJ J Hazard Mater; 2020 Jul; 394():122547. PubMed ID: 32289621 [TBL] [Abstract][Full Text] [Related]
75. Improvement of the sludge flocculation dewatering efficient by electromagnetic wave loading: research based on removal of bound water. Sang W; Li X; Feng Y; Zhang Q; Li D Environ Sci Pollut Res Int; 2020 Jan; 27(3):3413-3427. PubMed ID: 31845252 [TBL] [Abstract][Full Text] [Related]
76. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability. Zhu C; Zhang P; Wang H; Ye J Ultrason Sonochem; 2018 Jan; 40(Pt A):353-360. PubMed ID: 28946434 [TBL] [Abstract][Full Text] [Related]
77. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants. Xu Q; Wang Q; Zhang W; Yang P; Du Y; Wang D Water Res; 2018 Jul; 138():181-191. PubMed ID: 29597120 [TBL] [Abstract][Full Text] [Related]
78. Full biomass-based multifunctional flocculant from lignin and cationic starch. Sun D; Zeng J; Yang D; Qiu X; Liu W Int J Biol Macromol; 2023 Dec; 253(Pt 6):127287. PubMed ID: 37806418 [TBL] [Abstract][Full Text] [Related]
79. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Wu P; Yi J; Feng L; Li X; Chen Y; Liu Z; Tian S; Li S; Khan S; Sun Y Int J Biol Macromol; 2020 Jul; 155():708-720. PubMed ID: 32259538 [TBL] [Abstract][Full Text] [Related]
80. Better understanding the polymerization kinetics of ultrasonic-template method and new insight on sludge floc characteristics research. Feng L; Liu J; Xu C; Lu W; Li D; Zhao C; Liu B; Li X; Khan S; Zheng H; Sun Y Sci Total Environ; 2019 Nov; 689():546-556. PubMed ID: 31279201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]