These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 37696727)

  • 21. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens.
    Wen HG; Zhao JH; Zhang BS; Gao F; Wu XM; Yan YS; Zhang J; Guo HS
    Nat Plants; 2023 Sep; 9(9):1409-1418. PubMed ID: 37653339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAi Crop Protection Advances.
    Hernández-Soto A; Chacón-Cerdas R
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA Interference: Promising Approach to Combat Plant Viruses.
    Akbar S; Wei Y; Zhang MQ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-Spray-Mediated Silencing of
    Werner BT; Gaffar FY; Schuemann J; Biedenkopf D; Koch AM
    Front Plant Sci; 2020; 11():476. PubMed ID: 32411160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems.
    Ray P; Sahu D; Aminedi R; Chandran D
    Front Fungal Biol; 2022; 3():977502. PubMed ID: 37746174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spray-induced gene silencing (SIGS) as a tool for the management of Pine Pitch Canker forest disease.
    Bocos Asenjo IT; Amin H; Mosquera S; Díez Hermano S; Ginésy M; Diez Casero JJ; Niño Sánchez J
    Plant Dis; 2024 Aug; ():. PubMed ID: 39148367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small RNA-based plant protection against diseases.
    Bilir Ö; Göl D; Hong Y; McDowell JM; Tör M
    Front Plant Sci; 2022; 13():951097. PubMed ID: 36061762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Combinatorial Nanobased Spray-Induced Gene Silencing Technique for Crop Protection and Improvement.
    Ghosh S; Patra S; Ray S
    ACS Omega; 2023 Jun; 8(25):22345-22351. PubMed ID: 37396279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies.
    Šečić E; Kogel KH
    Curr Opin Biotechnol; 2021 Aug; 70():136-142. PubMed ID: 34000482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Insights on the Integrated Management of Plant Diseases by RNA Strategies: Mycoviruses and RNA Interference.
    Bocos-Asenjo IT; Niño-Sánchez J; Ginésy M; Diez JJ
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA silencing: From discovery and elucidation to application and perspectives.
    Zhao JH; Guo HS
    J Integr Plant Biol; 2022 Feb; 64(2):476-498. PubMed ID: 34964265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes.
    Cai Q; Qiao L; Wang M; He B; Lin FM; Palmquist J; Huang SD; Jin H
    Science; 2018 Jun; 360(6393):1126-1129. PubMed ID: 29773668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing.
    Song XS; Gu KX; Duan XX; Xiao XM; Hou YP; Duan YB; Wang JX; Yu N; Zhou MG
    Mol Plant Pathol; 2018 Dec; 19(12):2543-2560. PubMed ID: 30027625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake.
    Qiao L; Lan C; Capriotti L; Ah-Fong A; Nino Sanchez J; Hamby R; Heller J; Zhao H; Glass NL; Judelson HS; Mezzetti B; Niu D; Jin H
    Plant Biotechnol J; 2021 Sep; 19(9):1756-1768. PubMed ID: 33774895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanisms underlying host-induced gene silencing.
    Zand Karimi H; Innes RW
    Plant Cell; 2022 Aug; 34(9):3183-3199. PubMed ID: 35666177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions.
    Hua C; Zhao JH; Guo HS
    Mol Plant; 2018 Feb; 11(2):235-244. PubMed ID: 29229568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA interference and crop protection against biotic stresses.
    Kaur R; Choudhury A; Chauhan S; Ghosh A; Tiwari R; Rajam MV
    Physiol Mol Biol Plants; 2021 Oct; 27(10):2357-2377. PubMed ID: 34744371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversations between kingdoms: small RNAs.
    Weiberg A; Bellinger M; Jin H
    Curr Opin Biotechnol; 2015 Apr; 32():207-215. PubMed ID: 25622136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology.
    Wytinck N; Manchur CL; Li VH; Whyard S; Belmonte MF
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33339102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.