These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 37696727)

  • 41. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology.
    Wytinck N; Manchur CL; Li VH; Whyard S; Belmonte MF
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33339102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trans-Species Mobility of RNA Interference between Plants and Associated Organisms.
    Nien YC; Vanek A; Axtell MJ
    Plant Cell Physiol; 2024 May; 65(5):694-703. PubMed ID: 38288670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of an RNA Nanostructure for Effective
    Wu F; Yan L; Zhao X; Lv C; Jin W
    J Fungi (Basel); 2024 Jul; 10(7):. PubMed ID: 39057368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A safe ride in extracellular vesicles - small RNA trafficking between plant hosts and pathogens.
    Cai Q; He B; Jin H
    Curr Opin Plant Biol; 2019 Dec; 52():140-148. PubMed ID: 31654843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Exogenous Application of Potato Virus Y-Specific dsRNA on RNA Interference, Pattern-Triggered Immunity and Poly(ADP-ribose) Metabolism.
    Samarskaya VO; Spechenkova N; Markin N; Suprunova TP; Zavriev SK; Love AJ; Kalinina NO; Taliansky M
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Application of host induced gene silencing in crop protection against fungal diseases].
    Jin Y; Zhang T; Guo H
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):161-169. PubMed ID: 28956372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility.
    Hou Y; Zhai Y; Feng L; Karimi HZ; Rutter BD; Zeng L; Choi DS; Zhang B; Gu W; Chen X; Ye W; Innes RW; Zhai J; Ma W
    Cell Host Microbe; 2019 Jan; 25(1):153-165.e5. PubMed ID: 30595554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fungal RNA-dependent RNA polymerase is a novel player in plant infection and cross-kingdom RNA interference.
    Cheng AP; Lederer B; Oberkofler L; Huang L; Johnson NR; Platten F; Dunker F; Tisserant C; Weiberg A
    PLoS Pathog; 2023 Dec; 19(12):e1011885. PubMed ID: 38117848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exchange of Small Regulatory RNAs between Plants and Their Pests.
    Hudzik C; Hou Y; Ma W; Axtell MJ
    Plant Physiol; 2020 Jan; 182(1):51-62. PubMed ID: 31636103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and application of an RNA nanostructure to induce transient RNAi in difficult transgenic plants.
    Zhao X; Liu Z; Liu Y; Lu M; Xu J; Wu F; Jin W
    Biotechnol J; 2024 May; 19(5):e2400024. PubMed ID: 38797726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.
    Runo S
    Bioeng Bugs; 2011; 2(4):208-13. PubMed ID: 21829096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection.
    Fang R
    Sci China Life Sci; 2024 Mar; 67(3):626-628. PubMed ID: 38155277
    [No Abstract]   [Full Text] [Related]  

  • 53. Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer Disease Resistance.
    Hou Y; Ma W
    Trends Microbiol; 2020 Feb; 28(2):109-117. PubMed ID: 31606358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant's disease response.
    Rabuma T; Gupta OP; Chhokar V
    RNA Biol; 2022; 19(1):519-532. PubMed ID: 35442163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives.
    Zhao JH; Zhang T; Liu QY; Guo HS
    Plant Commun; 2021 Mar; 2(2):100167. PubMed ID: 33898979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions.
    Jiang CH; Li ZJ; Zheng LY; Yu YY; Niu DD
    Mol Plant Pathol; 2023 Aug; 24(8):999-1013. PubMed ID: 37026481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Minicell-based fungal RNAi delivery for sustainable crop protection.
    Islam MT; Davis Z; Chen L; Englaender J; Zomorodi S; Frank J; Bartlett K; Somers E; Carballo SM; Kester M; Shakeel A; Pourtaheri P; Sherif SM
    Microb Biotechnol; 2021 Jul; 14(4):1847-1856. PubMed ID: 33624940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of small RNAs in crop disease resistance.
    Tang J; Gu X; Liu J; He Z
    Stress Biol; 2021 Aug; 1(1):6. PubMed ID: 37676520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum.
    Schlemmer T; Lischka R; Wegner L; Ehlers K; Biedenkopf D; Koch A
    Fungal Biol Biotechnol; 2022 Jul; 9(1):14. PubMed ID: 35836276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease.
    Ouyang SQ; Ji HM; Feng T; Luo SJ; Cheng L; Wang N
    PLoS Pathog; 2023 Jun; 19(6):e1011463. PubMed ID: 37339156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.