These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37696773)
1. Use of tree-based machine learning methods to screen affinitive peptides based on docking data. Feng H; Wang F; Li N; Xu Q; Zheng G; Sun X; Hu M; Li X; Xing G; Zhang G Mol Inform; 2023 Dec; 42(12):e202300143. PubMed ID: 37696773 [TBL] [Abstract][Full Text] [Related]
2. A Random Forest Model for Peptide Classification Based on Virtual Docking Data. Feng H; Wang F; Li N; Xu Q; Zheng G; Sun X; Hu M; Xing G; Zhang G Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511165 [TBL] [Abstract][Full Text] [Related]
3. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
4. An Evaluation on Different Machine Learning Algorithms for Classification and Prediction of Antifungal Peptides. Mousavizadegan M; Mohabatkar H Med Chem; 2016; 12(8):795-800. PubMed ID: 26924627 [TBL] [Abstract][Full Text] [Related]
5. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of weka-based classification algorithms on medical diagnosis datasets. Dou Y; Meng W Technol Health Care; 2023; 31(S1):397-408. PubMed ID: 37066939 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
8. Predicting Health Material Accessibility: Development of Machine Learning Algorithms. Ji M; Liu Y; Hao T JMIR Med Inform; 2021 Sep; 9(9):e29175. PubMed ID: 34468321 [TBL] [Abstract][Full Text] [Related]
9. Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation. He J; Li J; Jiang S; Cheng W; Jiang J; Xu Y; Yang J; Zhou X; Chai C; Wu C Front Public Health; 2022; 10():967681. PubMed ID: 36091522 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Isabona J; Imoize AL; Kim Y Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632184 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection. Rodríguez M; Alesanco Á; Mehavilla L; García J Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028 [TBL] [Abstract][Full Text] [Related]
12. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease. Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840 [TBL] [Abstract][Full Text] [Related]
14. Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran. Moslehi S; Rabiei N; Soltanian AR; Mamani M BMC Med Inform Decis Mak; 2022 Jul; 22(1):192. PubMed ID: 35871639 [TBL] [Abstract][Full Text] [Related]
15. Classification of imbalanced data using machine learning algorithms to predict the risk of renal graft failures in Ethiopia. Mulugeta G; Zewotir T; Tegegne AS; Juhar LH; Muleta MB BMC Med Inform Decis Mak; 2023 May; 23(1):98. PubMed ID: 37217892 [TBL] [Abstract][Full Text] [Related]
16. Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms. Tian Y; Zhang Z; Yan A Molecules; 2023 Sep; 28(19):. PubMed ID: 37836625 [TBL] [Abstract][Full Text] [Related]
17. iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers. Arora P; Periwal N; Goyal Y; Sood V; Kaur B BMC Bioinformatics; 2023 Apr; 24(1):141. PubMed ID: 37041520 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related]
19. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
20. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]