These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 37696983)
1. Quantifying the impact of Wolbachia releases on dengue infection in Townsville, Australia. Ogunlade ST; Adekunle AI; Meehan MT; McBryde ES Sci Rep; 2023 Sep; 13(1):14932. PubMed ID: 37696983 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Taghikhani R; Sharomi O; Gumel AB Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316 [TBL] [Abstract][Full Text] [Related]
4. The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Anders KL; Indriani C; Ahmad RA; Tantowijoyo W; Arguni E; Andari B; Jewell NP; Rances E; O'Neill SL; Simmons CP; Utarini A Trials; 2018 May; 19(1):302. PubMed ID: 29855331 [TBL] [Abstract][Full Text] [Related]
5. Changes in the genetic structure of Aedes aegypti (Diptera: Culicidae) populations in Queensland, Australia, across two seasons: implications for potential mosquito releases. Endersby NM; Hoffmann AA; White VL; Ritchie SA; Johnson PH; Weeks AR J Med Entomol; 2011 Sep; 48(5):999-1007. PubMed ID: 21936318 [TBL] [Abstract][Full Text] [Related]
6. Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. Wimalasiri-Yapa BMCR; Huang B; Ross PA; Hoffmann AA; Ritchie SA; Frentiu FD; Warrilow D; van den Hurk AF PLoS Negl Trop Dis; 2023 Mar; 17(3):e0011222. PubMed ID: 36989319 [TBL] [Abstract][Full Text] [Related]
7. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. Ribeiro Dos Santos G; Durovni B; Saraceni V; Souza Riback TI; Pinto SB; Anders KL; Moreira LA; Salje H Lancet Infect Dis; 2022 Nov; 22(11):1587-1595. PubMed ID: 36182679 [TBL] [Abstract][Full Text] [Related]
8. Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model. Zheng B; Chen LH; Sun QW Math Biosci Eng; 2019 Jun; 16(5):5531-5550. PubMed ID: 31499724 [TBL] [Abstract][Full Text] [Related]
9. The impact of large-scale deployment of Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL F1000Res; 2019; 8():1328. PubMed ID: 33447371 [No Abstract] [Full Text] [Related]
11. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Zhang X; Tang S; Liu Q; Cheke RA; Zhu H Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790 [TBL] [Abstract][Full Text] [Related]
12. Flooding in Townsville, North Queensland, Australia, in February 2019 and Its Effects on Mosquito-Borne Diseases. Adekunle AI; Adegboye OA; Rahman KM Int J Environ Res Public Health; 2019 Apr; 16(8):. PubMed ID: 30999712 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. Jeffery JA; Thi Yen N; Nam VS; Nghia le T; Hoffmann AA; Kay BH; Ryan PA PLoS Negl Trop Dis; 2009 Nov; 3(11):e552. PubMed ID: 19956588 [TBL] [Abstract][Full Text] [Related]
14. Reducing dengue fever cases at the lowest budget: a constrained optimization approach applied to Thailand. Knerer G; Currie CSM; Brailsford SC BMC Public Health; 2021 Apr; 21(1):807. PubMed ID: 33906628 [TBL] [Abstract][Full Text] [Related]
16. The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced. Ndii MZ; Allingham D; Hickson RI; Glass K Theor Popul Biol; 2016 Oct; 111():9-15. PubMed ID: 27217229 [TBL] [Abstract][Full Text] [Related]
17. What makes community engagement effective?: Lessons from the Eliminate Dengue Program in Queensland Australia. Kolopack PA; Parsons JA; Lavery JV PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003713. PubMed ID: 25875485 [TBL] [Abstract][Full Text] [Related]
18. Modelling the transmission dynamics of dengue in the presence of Wolbachia. Ndii MZ; Hickson RI; Allingham D; Mercer GN Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184 [TBL] [Abstract][Full Text] [Related]
19. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. Ye YH; Carrasco AM; Frentiu FD; Chenoweth SF; Beebe NW; van den Hurk AF; Simmons CP; O'Neill SL; McGraw EA PLoS Negl Trop Dis; 2015; 9(6):e0003894. PubMed ID: 26115104 [TBL] [Abstract][Full Text] [Related]
20. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Yeap HL; Axford JK; Popovici J; Endersby NM; Iturbe-Ormaetxe I; Ritchie SA; Hoffmann AA Parasit Vectors; 2014 Feb; 7():58. PubMed ID: 24495395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]