These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 37697004)

  • 1. Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity.
    Su M; Li F; Wang Y; Gao Y; Lan W; Shao Z; Zhu C; Tang N; Gan J; Wu Z; Ji Q
    Nat Chem Biol; 2024 Feb; 20(2):180-189. PubMed ID: 37697004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease.
    Wang Y; Wang Y; Pan D; Yu H; Zhang Y; Chen W; Li F; Wu Z; Ji Q
    Cell Rep; 2022 Sep; 40(13):111418. PubMed ID: 36170834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and Characterization of Novel Type V Cas12f Nucleases with Diverse Protospacer Adjacent Motif Preferences.
    Sharrar A; Arake de Tacca L; Collingwood T; Meacham Z; Rabuka D; Staples-Ager J; Schelle M
    CRISPR J; 2023 Aug; 6(4):350-358. PubMed ID: 37267210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the miniature type V-F CRISPR-Cas effector enzyme.
    Takeda SN; Nakagawa R; Okazaki S; Hirano H; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Nishimasu H; Nureki O
    Mol Cell; 2021 Feb; 81(3):558-570.e3. PubMed ID: 33333018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors.
    Chen W; Ma J; Wu Z; Wang Z; Zhang H; Fu W; Pan D; Shi J; Ji Q
    Mol Cell; 2023 Aug; 83(15):2768-2780.e6. PubMed ID: 37402371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing.
    Kong X; Zhang H; Li G; Wang Z; Kong X; Wang L; Xue M; Zhang W; Wang Y; Lin J; Zhou J; Shen X; Wei Y; Zhong N; Bai W; Yuan Y; Shi L; Zhou Y; Yang H
    Nat Commun; 2023 Apr; 14(1):2046. PubMed ID: 37041195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease.
    Xiao R; Li Z; Wang S; Han R; Chang L
    Nucleic Acids Res; 2021 Apr; 49(7):4120-4128. PubMed ID: 33764415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Engineering of a Novel Miniature
    Wang Y; Wang Y; Tang N; Wang Z; Pan D; Ji Q
    ACS Synth Biol; 2024 Jun; ():. PubMed ID: 38941613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing by miniature CRISPR/Cas12f1 enzyme in Escherichia coli.
    Okano K; Sato Y; Hizume T; Honda K
    J Biosci Bioeng; 2021 Aug; 132(2):120-124. PubMed ID: 34023220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed genome editing by a miniature CRISPR-Cas12f nuclease.
    Wu Z; Zhang Y; Yu H; Pan D; Wang Y; Wang Y; Li F; Liu C; Nan H; Chen W; Ji Q
    Nat Chem Biol; 2021 Nov; 17(11):1132-1138. PubMed ID: 34475565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption.
    Xin C; Yin J; Yuan S; Ou L; Liu M; Zhang W; Hu J
    Nat Commun; 2022 Sep; 13(1):5623. PubMed ID: 36153319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OffScan: a universal and fast CRISPR off-target sites detection tool.
    Cui Y; Liao X; Peng S; Tang T; Huang C; Yang C
    BMC Genomics; 2020 Mar; 21(Suppl 1):872. PubMed ID: 32138651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More precise, more universal and more specific - the next generation of RNA-guided endonucleases for genome editing.
    Marzec M; Hensel G
    FEBS J; 2019 Dec; 286(23):4657-4660. PubMed ID: 31612609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.