These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 37697033)

  • 1. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment.
    Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A
    Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning and Radiomics Analysis for Tumor Budding Prediction in Colorectal Liver Metastases Magnetic Resonance Imaging Assessment.
    Granata V; Fusco R; Brunese MC; Ferrara G; Tatangelo F; Ottaiano A; Avallone A; Miele V; Normanno N; Izzo F; Petrillo A
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38248029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Grassi R; Grassi F; Ottaiano A; Nasti G; Tatangelo F; Pilone V; Miele V; Brunese MC; Izzo F; Petrillo A
    Radiol Med; 2022 May; 127(5):461-470. PubMed ID: 35347583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast MR-Based Radiomics and Machine Learning Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases: A Preliminary Study.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell' Aversana F; Ottaiano A; Avallone A; Nasti G; Grassi F; Pilone V; Miele V; Brunese L; Izzo F; Petrillo A
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Grassi F; Belli A; Silvestro L; Ottaiano A; Nasti G; Avallone A; Flammia F; Miele V; Tatangelo F; Izzo F; Petrillo A
    Radiol Med; 2022 Jul; 127(7):763-772. PubMed ID: 35653011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases.
    Granata V; Fusco R; Setola SV; De Muzio F; Dell' Aversana F; Cutolo C; Faggioni L; Miele V; Izzo F; Petrillo A
    Cancers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOB-MR Based Radiomics Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Ottaiano A; Nasti G; Grassi R; Pilone V; Miele V; Brunese MC; Tatangelo F; Izzo F; Petrillo A
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.
    Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G
    Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.
    Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M
    Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases.
    Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging.
    Granata V; Fusco R; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Izzo F; Normanno N; Petrillo A
    Radiol Med; 2024 Mar; 129(3):420-428. PubMed ID: 38308061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern.
    Granata V; Fusco R; De Muzio F; Cutolo C; Mattace Raso M; Gabelloni M; Avallone A; Ottaiano A; Tatangelo F; Brunese MC; Miele V; Izzo F; Petrillo A
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer.
    Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H
    Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning.
    Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF
    Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Radiomics features of tumour and healthy liver tissue in a limited CT dataset: A machine learning study.
    Lysdahlgaard S
    Radiography (Lond); 2022 Aug; 28(3):718-724. PubMed ID: 35428570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
    Ji GW; Zhu FP; Xu Q; Wang K; Wu MY; Tang WW; Li XC; Wang XH
    EBioMedicine; 2019 Dec; 50():156-165. PubMed ID: 31735556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Local Tumor Progression After Microwave Ablation in Colorectal Carcinoma Liver Metastases Patients by MRI Radiomics and Clinical Characteristics-Based Combined Model: Preliminary Results.
    Shahveranova A; Balli HT; Aikimbaev K; Piskin FC; Sozutok S; Yucel SP
    Cardiovasc Intervent Radiol; 2023 Jun; 46(6):713-725. PubMed ID: 37156944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.