These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37697050)
1. Origin and Evolution of Plant Long Terminal Repeat Retrotransposons with Additional Ribonuclease H. Biryukov M; Ustyantsev K Genome Biol Evol; 2023 Sep; 15(9):. PubMed ID: 37697050 [TBL] [Abstract][Full Text] [Related]
2. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Ustyantsev K; Novikova O; Blinov A; Smyshlyaev G Mol Biol Evol; 2015 May; 32(5):1197-207. PubMed ID: 25605791 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Malik HS; Eickbush TH Genome Res; 2001 Jul; 11(7):1187-97. PubMed ID: 11435400 [TBL] [Abstract][Full Text] [Related]
4. Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution. Smyshlyaev G; Voigt F; Blinov A; Barabas O; Novikova O Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20140-5. PubMed ID: 24277848 [TBL] [Abstract][Full Text] [Related]
5. Co-evolution of plant LTR-retrotransposons and their host genomes. Zhao M; Ma J Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032 [TBL] [Abstract][Full Text] [Related]
6. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Ramakrishnan M; Papolu PK; Mullasseri S; Zhou M; Sharma A; Ahmad Z; Satheesh V; Kalendar R; Wei Q Plant Cell Rep; 2023 Jan; 42(1):3-15. PubMed ID: 36401648 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
8. Non-LTR retrotransposons in fungi. Novikova O; Fet V; Blinov A Funct Integr Genomics; 2009 Feb; 9(1):27-42. PubMed ID: 18677522 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586 [TBL] [Abstract][Full Text] [Related]
10. A Missing Link between Retrotransposons and Retroviruses. Wang J; Han GZ mBio; 2022 Apr; 13(2):e0018722. PubMed ID: 35289644 [TBL] [Abstract][Full Text] [Related]
11. Ribonuclease H evolution in retrotransposable elements. Malik HS Cytogenet Genome Res; 2005; 110(1-4):392-401. PubMed ID: 16093691 [TBL] [Abstract][Full Text] [Related]
12. [Non-LTR retrotransposons: LINEs and SINEs in plant genome]. Cheng XD; Ling HQ Yi Chuan; 2006 Jun; 28(6):731-6. PubMed ID: 16818439 [TBL] [Abstract][Full Text] [Related]
13. The first homosporous lycophyte genome revealed the association between the recent dynamic accumulation of LTR-RTs and genome size variation. Yu JG; Tang JY; Wei R; Lan MF; Xiang RC; Zhang XC; Xiang QP Plant Mol Biol; 2023 Aug; 112(6):325-340. PubMed ID: 37380791 [TBL] [Abstract][Full Text] [Related]
14. Long terminal repeat retrotransposons of Oryza sativa. McCarthy EM; Liu J; Lizhi G; McDonald JF Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
16. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376 [TBL] [Abstract][Full Text] [Related]
18. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Li SF; She HB; Yang LL; Lan LN; Zhang XY; Wang LY; Zhang YL; Li N; Deng CL; Qian W; Gao WJ Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077556 [TBL] [Abstract][Full Text] [Related]
19. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164 [TBL] [Abstract][Full Text] [Related]
20. Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Friesen N; Brandes A; Heslop-Harrison JS Mol Biol Evol; 2001 Jul; 18(7):1176-88. PubMed ID: 11420359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]