These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37697238)

  • 1. Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas.
    Liu Z; Hong X; Wang L; Ma Z; Guan F; Wang W; Qiu Y; Zhang X; Duan W; Wang M; Sun C; Zhao Y; Duan J; Sun Q; Liu L; Ding L; Ji Y; Yan D; Liu X; Cheng J; Zhang Z; Li ZC; Yan J
    BMC Cancer; 2023 Sep; 23(1):848. PubMed ID: 37697238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.
    Xu J; Lai M; Li S; Ye K; Li L; Hu Q; Ai R; Zhou J; Li J; Zhen J; Cai L; Shi C
    Clin Neurol Neurosurg; 2022 Nov; 222():107478. PubMed ID: 36244075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers.
    Haldar D; Kazerooni AF; Arif S; Familiar A; Madhogarhia R; Khalili N; Bagheri S; Anderson H; Shaikh IS; Mahtabfar A; Kim MC; Tu W; Ware J; Vossough A; Davatzikos C; Storm PB; Resnick A; Nabavizadeh A
    Neoplasia; 2023 Feb; 36():100869. PubMed ID: 36566592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of
    Wagner MW; Hainc N; Khalvati F; Namdar K; Figueiredo L; Sheng M; Laughlin S; Shroff MM; Bouffet E; Tabori U; Hawkins C; Yeom KW; Ertl-Wagner BB
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):759-765. PubMed ID: 33574103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.
    Kudus K; Wagner MW; Namdar K; Nobre L; Bouffet E; Tabori U; Hawkins C; Yeom KW; Ertl-Wagner BB; Khalvati F
    Eur Radiol; 2024 Apr; 34(4):2772-2781. PubMed ID: 37803212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.
    Soldatelli MD; Namdar K; Tabori U; Hawkins C; Yeom K; Khalvati F; Ertl-Wagner BB; Wagner MW
    AJNR Am J Neuroradiol; 2024 Jun; 45(6):753-760. PubMed ID: 38604736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric low-grade gliomas can be molecularly stratified for risk.
    Yang RR; Aibaidula A; Wang WW; Chan AK; Shi ZF; Zhang ZY; Chan DTM; Poon WS; Liu XZ; Li WC; Zhang RQ; Li YX; Chung NY; Chen H; Wu J; Zhou L; Li KK; Ng HK
    Acta Neuropathol; 2018 Oct; 136(4):641-655. PubMed ID: 29948154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle.
    Mo H; Liang W; Huang Z; Li X; Xiao X; Liu H; He J; Xu Y; Wu Y
    Eur Radiol; 2023 Jun; 33(6):4259-4269. PubMed ID: 36547672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm.
    Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z
    J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric MRI radiomics for the differentiation of brain glial cell hyperplasia from low-grade glioma.
    Gu S; Qian J; Yang L; Sun Z; Hu C; Wang X; Hu S; Xie Y
    BMC Med Imaging; 2023 Aug; 23(1):116. PubMed ID: 37653513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas.
    Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J
    Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach.
    Kandalgaonkar P; Sahu A; Saju AC; Joshi A; Mahajan A; Thakur M; Sahay A; Epari S; Sinha S; Dasgupta A; Chatterjee A; Shetty P; Moiyadi A; Agarwal J; Gupta T; Goda JS
    Front Oncol; 2022; 12():879376. PubMed ID: 36276136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.