These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37697297)

  • 1. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction.
    Liang S; Liu S; Song J; Lin Q; Zhao S; Li S; Li J; Liang S; Wang J
    BMC Bioinformatics; 2023 Sep; 24(1):335. PubMed ID: 37697297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network.
    Lan W; Dong Y; Chen Q; Zheng R; Liu J; Pan Y; Chen YP
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction.
    Chen Y; Lei X
    Front Microbiol; 2022; 13():919380. PubMed ID: 35711758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network.
    Guo Y; Yi M
    Brief Funct Genomics; 2024 Jul; 23(4):384-394. PubMed ID: 37738503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPCDA: Prediction of circRNA-disease associations by utilizing attention mechanisms on metapaths.
    Lu P; Zhang W; Wu J
    Comput Biol Chem; 2024 Feb; 108():107989. PubMed ID: 38016366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks.
    Fu X; King I
    Neural Netw; 2024 Feb; 170():266-275. PubMed ID: 38000310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network.
    Lan W; Zhang H; Dong Y; Chen Q; Cao J; Peng W; Liu J; Li M
    Methods; 2022 Dec; 208():35-41. PubMed ID: 36280134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RDGAN: Prediction of circRNA-Disease Associations via Resistance Distance and Graph Attention Network.
    Lu P; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1445-1457. PubMed ID: 38787672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.
    Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph auto-encoders and attention mechanism.
    Yang B; Chen H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs.
    Chen Y; Wang Y; Ding Y; Su X; Wang C
    Comput Biol Med; 2022 Apr; 143():105322. PubMed ID: 35217342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.