These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37697433)

  • 1. Assessing base-resolution DNA mechanics on the genome scale.
    Jiang WJ; Hu C; Lai F; Pang W; Yi X; Xu Q; Wang H; Zhou J; Zhu H; Zhong C; Kuang Z; Fan R; Shen J; Zhou X; Wang YJ; Wong CCL; Zheng X; Wu HJ
    Nucleic Acids Res; 2023 Oct; 51(18):9552-9566. PubMed ID: 37697433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing bimodal representations to predict DNA bendability within a self-supervised pre-trained framework.
    Yang M; Zhang S; Zheng Z; Zhang P; Liang Y; Tang S
    Nucleic Acids Res; 2024 Apr; 52(6):e33. PubMed ID: 38375921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepBend: An interpretable model of DNA bendability.
    Khan SR; Sakib S; Rahman MS; Samee MAH
    iScience; 2023 Feb; 26(2):105945. PubMed ID: 36866046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring DNA mechanics on the genome scale.
    Basu A; Bobrovnikov DG; Qureshi Z; Kayikcioglu T; Ngo TTM; Ranjan A; Eustermann S; Cieza B; Morgan MT; Hejna M; Rube HT; Hopfner KP; Wolberger C; Song JS; Ha T
    Nature; 2021 Jan; 589(7842):462-467. PubMed ID: 33328628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-base resolution nucleosome mapping on DNA sequences.
    Gabdank I; Barash D; Trifonov EN
    J Biomol Struct Dyn; 2010 Aug; 28(1):107-22. PubMed ID: 20476799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNAcycP: a deep learning tool for DNA cyclizability prediction.
    Li K; Carroll M; Vafabakhsh R; Wang XA; Wang JP
    Nucleic Acids Res; 2022 Apr; 50(6):3142-3154. PubMed ID: 35288750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for assaying DNA flexibility.
    Cirakli E; Basu A
    Methods; 2023 Nov; 219():68-72. PubMed ID: 37769928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA structure in human RNA polymerase II promoters.
    Pedersen AG; Baldi P; Chauvin Y; Brunak S
    J Mol Biol; 1998 Aug; 281(4):663-73. PubMed ID: 9710538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing chromosome conformation.
    Fraser J; Rousseau M; Blanchette M; Dostie J
    Methods Mol Biol; 2010; 674():251-68. PubMed ID: 20827597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis.
    Krijger PHL; Geeven G; Bianchi V; Hilvering CRE; de Laat W
    Methods; 2020 Jan; 170():17-32. PubMed ID: 31351925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information.
    Onimaru K; Nishimura O; Kuraku S
    PLoS One; 2020; 15(7):e0235748. PubMed ID: 32701977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA helix: the importance of being GC-rich.
    Vinogradov AE
    Nucleic Acids Res; 2003 Apr; 31(7):1838-44. PubMed ID: 12654999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High affinity binding of MEF-2C correlates with DNA bending.
    Meierhans D; Sieber M; Allemann RK
    Nucleic Acids Res; 1997 Nov; 25(22):4537-44. PubMed ID: 9358163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Plasticity of Pioneer Factor Sox2 and DNA Bendability Modulate Nucleosome Engagement and Sox2-Oct4 Synergism.
    Malaga Gadea FC; Nikolova EN
    J Mol Biol; 2023 Jan; 435(2):167916. PubMed ID: 36495920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepC: predicting 3D genome folding using megabase-scale transfer learning.
    Schwessinger R; Gosden M; Downes D; Brown RC; Oudelaar AM; Telenius J; Teh YW; Lunter G; Hughes JR
    Nat Methods; 2020 Nov; 17(11):1118-1124. PubMed ID: 33046896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.