These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37697928)
1. Focusing ion funnel-assisted ambient electrospray enables high-density and uniform deposition of non-spherical gold nanoparticles for highly sensitive surface-enhanced Raman scattering. Akbali B; Boisdon C; Smith BL; Chaisrikhwun B; Wongravee K; Vilaivan T; Lima C; Huang CH; Chen TY; Goodacre R; Maher S Analyst; 2023 Sep; 148(19):4677-4687. PubMed ID: 37697928 [TBL] [Abstract][Full Text] [Related]
2. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive SERS detection of pesticide residues based on multi-hotspot buckypaper modified with gold nanoparticles. Duan L; Liu X; Meng X; Qu L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123665. PubMed ID: 38029600 [TBL] [Abstract][Full Text] [Related]
4. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
5. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids. Wu HC; Chen TC; Tsai HJ; Chen CS Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. Xu Y; Wu Y; Wei J; Zhao Y; Xue P Anal Methods; 2024 May; 16(18):2888-2896. PubMed ID: 38646710 [TBL] [Abstract][Full Text] [Related]
7. Research on a three-dimensional SERS substrate based on a CNTs/Ag@Au/SiO Sun C; Wang L; Guo N; Hu R; Ye L; Hu Z; Ding J Anal Methods; 2023 Sep; 15(35):4494-4505. PubMed ID: 37610266 [TBL] [Abstract][Full Text] [Related]
8. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Geng ZQ; Zheng JJ; Li YP; Chen Y; Wang P; Han CQ; Yang GH; Qu LL Talanta; 2020 Dec; 220():121340. PubMed ID: 32928387 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
10. Molecularly imprinted core-shell Au nanoparticles for 2,4-dichlorophenoxyacetic acid detection in milk using surface-enhanced Raman spectroscopy. Feng S; Hu Y; Chen L; Lu X Anal Chim Acta; 2022 Sep; 1227():340333. PubMed ID: 36089302 [TBL] [Abstract][Full Text] [Related]
11. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application. Wang JF; Wu XZ; Xiao R; Dong PT; Wang CG PLoS One; 2014; 9(6):e97976. PubMed ID: 24886913 [TBL] [Abstract][Full Text] [Related]
12. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles. Zhang C; Chen S; Jiang Z; Shi Z; Wang J; Du L ACS Appl Mater Interfaces; 2021 Jun; 13(24):29222-29229. PubMed ID: 34115481 [TBL] [Abstract][Full Text] [Related]
13. Droplet-Confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements. Xu D; Teng F; Wang Z; Lu N ACS Appl Mater Interfaces; 2017 Jun; 9(25):21548-21553. PubMed ID: 28580781 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC; Yang KH; Liu YC; Yu CC; Wu YH Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430 [TBL] [Abstract][Full Text] [Related]
15. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection. Chen YF; Lee YC; Lin WW; Lu MC; Yang YC; Chiu CW ACS Omega; 2024 Jan; 9(1):1894-1903. PubMed ID: 38222643 [TBL] [Abstract][Full Text] [Related]
16. Direct Writing of SERS Substrates Using Femtosecond Laser Pulses. Huang C; Li H; Zhang X ACS Omega; 2024 Sep; 9(35):37188-37196. PubMed ID: 39246463 [TBL] [Abstract][Full Text] [Related]
17. A three-dimensional gold nanoparticles spherical liquid array for SERS sensitive detection of pesticide residues in apple. Wei Q; Pan C; Wang T; Pu H; Sun DW Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123357. PubMed ID: 37776705 [TBL] [Abstract][Full Text] [Related]
18. Spatially Uniform and Quantitative Surface-Enhanced Raman Scattering under Modal Ultrastrong Coupling Beyond Nanostructure Homogeneity Limits. Suganami Y; Oshikiri T; Mitomo H; Sasaki K; Liu YE; Shi X; Matsuo Y; Ijiro K; Misawa H ACS Nano; 2024 Feb; 18(6):4993-5002. PubMed ID: 38299996 [TBL] [Abstract][Full Text] [Related]
19. Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Qi X; Wang X; Dong Y; Xie J; Gui X; Bai J; Duan J; Liu J; Yao H Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120955. PubMed ID: 35124484 [TBL] [Abstract][Full Text] [Related]
20. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection. Chen S; Li Q; Tian D; Ke P; Yang X; Wu Q; Chen J; Hu C; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121030. PubMed ID: 35189488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]