These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37698195)
41. Atlas of putative minima and low-lying energy networks of water clusters n = 3-25. Rakshit A; Bandyopadhyay P; Heindel JP; Xantheas SS J Chem Phys; 2019 Dec; 151(21):214307. PubMed ID: 31822087 [TBL] [Abstract][Full Text] [Related]
42. Decoding heat capacity features from the energy landscape. Wales DJ Phys Rev E; 2017 Mar; 95(3-1):030105. PubMed ID: 28415307 [TBL] [Abstract][Full Text] [Related]
43. Global analysis of the energy landscapes of molecular crystal structures by applying the threshold algorithm. Yang S; Day GM Commun Chem; 2022 Jul; 5(1):86. PubMed ID: 36697680 [TBL] [Abstract][Full Text] [Related]
44. Exploration of multiple energy landscapes for zirconia nanoclusters. Woodley SM; Hamad S; Catlow CR Phys Chem Chem Phys; 2010 Aug; 12(30):8454-65. PubMed ID: 20617256 [TBL] [Abstract][Full Text] [Related]
45. Communication: Certifying the potential energy landscape. Mehta D; Hauenstein JD; Wales DJ J Chem Phys; 2013 May; 138(17):171101. PubMed ID: 23656107 [TBL] [Abstract][Full Text] [Related]
46. Data-driven learning and prediction of inorganic crystal structures. Deringer VL; Proserpio DM; Csányi G; Pickard CJ Faraday Discuss; 2018 Oct; 211(0):45-59. PubMed ID: 30043006 [TBL] [Abstract][Full Text] [Related]
47. Lowest-energy structures of (C60)nX (X=Li+,Na+,K+,Cl-) and (C60)nYCl (Y=Li,Na,K) clusters for n=13. Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ J Chem Phys; 2004 Dec; 121(24):12315-22. PubMed ID: 15606250 [TBL] [Abstract][Full Text] [Related]
48. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble. Wang C; Stratt RM J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402 [TBL] [Abstract][Full Text] [Related]
49. Data-efficient iterative training of Gaussian approximation potentials: Application to surface structure determination of rutile IrO Timmermann J; Lee Y; Staacke CG; Margraf JT; Scheurer C; Reuter K J Chem Phys; 2021 Dec; 155(24):244107. PubMed ID: 34972361 [TBL] [Abstract][Full Text] [Related]
50. Energy Landscapes for Electronic Structure. Burton HGA; Wales DJ J Chem Theory Comput; 2021 Jan; 17(1):151-169. PubMed ID: 33369396 [TBL] [Abstract][Full Text] [Related]
51. Finding pathways between distant local minima. Carr JM; Trygubenko SA; Wales DJ J Chem Phys; 2005 Jun; 122(23):234903. PubMed ID: 16008483 [TBL] [Abstract][Full Text] [Related]
52. Machine learning landscapes and predictions for patient outcomes. Das R; Wales DJ R Soc Open Sci; 2017 Jul; 4(7):170175. PubMed ID: 28791144 [TBL] [Abstract][Full Text] [Related]
53. Energy landscapes for machine learning. Ballard AJ; Das R; Martiniani S; Mehta D; Sagun L; Stevenson JD; Wales DJ Phys Chem Chem Phys; 2017 May; 19(20):12585-12603. PubMed ID: 28367548 [TBL] [Abstract][Full Text] [Related]
54. A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo. Paleico ML; Behler J J Chem Phys; 2020 Mar; 152(9):094109. PubMed ID: 33480732 [TBL] [Abstract][Full Text] [Related]
55. Energy Landscapes of Carbon Clusters from Tight-Binding Quantum Potentials. Furman D; Naumkin F; Wales DJ J Phys Chem A; 2022 Apr; 126(15):2342-2352. PubMed ID: 35389225 [TBL] [Abstract][Full Text] [Related]
56. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials. Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822 [TBL] [Abstract][Full Text] [Related]
57. Electrostatics-Assisted Building-Up Procedure for Capturing Energy Minima of Metal Clusters: Test Case of Ag Ahuja P; Molayem M; Gadre SR J Phys Chem A; 2019 Sep; 123(36):7872-7880. PubMed ID: 31433180 [TBL] [Abstract][Full Text] [Related]
58. Theoretical Investigation of Molecular and Electronic Structures of Buckminsterfullerene-Silicon Quantum Dot Systems. Fedorov AS; Kuzubov AA; Kholtobina AS; Kovaleva EA; Knaup J; Irle S J Phys Chem A; 2016 Dec; 120(49):9767-9775. PubMed ID: 27973813 [TBL] [Abstract][Full Text] [Related]
59. Efficient Global Structure Optimization with a Machine-Learned Surrogate Model. Bisbo MK; Hammer B Phys Rev Lett; 2020 Feb; 124(8):086102. PubMed ID: 32167316 [TBL] [Abstract][Full Text] [Related]
60. Neural network atomistic potentials for global energy minima search in carbon clusters. Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]