These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37698195)
61. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape. Banerjee S; Dasgupta C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213 [TBL] [Abstract][Full Text] [Related]
62. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. Wales DJ J Chem Phys; 2015 Apr; 142(13):130901. PubMed ID: 25854218 [TBL] [Abstract][Full Text] [Related]
63. Exploring Nanocluster Potential Energy Surfaces via Deep Reinforcement Learning: Strategies for Global Minimum Search. Raju RK J Phys Chem A; 2024 Oct; 128(42):9122-9134. PubMed ID: 39397328 [TBL] [Abstract][Full Text] [Related]
64. Augmenting Basin-Hopping With Techniques From Unsupervised Machine Learning: Applications in Spectroscopy and Ion Mobility. Zhou C; Ieritano C; Hopkins WS Front Chem; 2019; 7():519. PubMed ID: 31440497 [TBL] [Abstract][Full Text] [Related]
65. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Bartók AP; Payne MC; Kondor R; Csányi G Phys Rev Lett; 2010 Apr; 104(13):136403. PubMed ID: 20481899 [TBL] [Abstract][Full Text] [Related]
66. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. Fujikake S; Deringer VL; Lee TH; Krynski M; Elliott SR; Csányi G J Chem Phys; 2018 Jun; 148(24):241714. PubMed ID: 29960342 [TBL] [Abstract][Full Text] [Related]
67. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers. Satoh H; Oda T; Nakakoji K; Uno T; Tanaka H; Iwata S; Ohno K J Chem Theory Comput; 2016 Nov; 12(11):5293-5308. PubMed ID: 27673598 [TBL] [Abstract][Full Text] [Related]
68. Energy landscapes and global thermodynamics for alanine peptides. Somani S; Wales DJ J Chem Phys; 2013 Sep; 139(12):121909. PubMed ID: 24089721 [TBL] [Abstract][Full Text] [Related]
69. Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction. Cao S; Chen SJ Nucleic Acids Mol Biol; 2012; 27():185-212. PubMed ID: 27293312 [TBL] [Abstract][Full Text] [Related]
70. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Ouyang R; Xie Y; Jiang DE Nanoscale; 2015 Sep; 7(36):14817-21. PubMed ID: 26308236 [TBL] [Abstract][Full Text] [Related]
71. Efficient Basin-Hopping Sampling of Reaction Intermediates through Molecular Fragmentation and Graph Theory. Kim Y; Choi S; Kim WY J Chem Theory Comput; 2014 Jun; 10(6):2419-26. PubMed ID: 26580762 [TBL] [Abstract][Full Text] [Related]
72. A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from density functional theory-based potential energy surfaces: The example of Si(n) (n=3,15) as a test case. Marchal R; Carbonnière P; Pouchan C J Chem Phys; 2009 Sep; 131(11):114105. PubMed ID: 19778098 [TBL] [Abstract][Full Text] [Related]
73. Multicanonical basin hopping: a new global optimization method for complex systems. Zhan L; Piwowar B; Liu WK; Hsu PJ; Lai SK; Chen JZ J Chem Phys; 2004 Mar; 120(12):5536-42. PubMed ID: 15267429 [TBL] [Abstract][Full Text] [Related]
74. Global exploration of the enthalpy landscape of calcium carbide. Kulkarni A; Doll K; Schön JC; Jansen M J Phys Chem B; 2010 Dec; 114(47):15573-81. PubMed ID: 21053941 [TBL] [Abstract][Full Text] [Related]