These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37698195)

  • 81. Phase transition and landscape statistics of the number partitioning problem.
    Stadler PF; Hordijk W; Fontanari JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056701. PubMed ID: 12786316
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Atlasing of Assembly Landscapes using Distance Geometry and Graph Rigidity.
    Prabhu R; Sitharam M; Ozkan A; Wu R
    J Chem Inf Model; 2020 Oct; 60(10):4924-4957. PubMed ID: 32786706
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Defect motifs for constant mean curvature surfaces.
    Kusumaatmaja H; Wales DJ
    Phys Rev Lett; 2013 Apr; 110(16):165502. PubMed ID: 23679616
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
    Hajibabaei A; Umer M; Anand R; Ha M; Kim KS
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808
    [TBL] [Abstract][Full Text] [Related]  

  • 85. High Temperature Accelerated Stone-Wales Transformation and the Threshold Temperature of IPR-C
    Mitchell I; Qiu L; Lamb LD; Ding F
    J Phys Chem A; 2021 Jun; 125(21):4548-4557. PubMed ID: 34032443
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57.
    Lee SU; Han YK
    J Chem Phys; 2004 Aug; 121(8):3941-2. PubMed ID: 15303965
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Dimerization of defect fullerenes and the orientational phase transition in oxidized C60 fullerite.
    Gutsev GL; Belay KG; Weatherford CA; Vasilets VN; Anokhin EM; Maksimychev AV; Val'ba OV; Martynenko VM; Baskakov SA; Leskova ES; Shulga YM
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1887-96. PubMed ID: 21449325
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Data-Driven Learning of Total and Local Energies in Elemental Boron.
    Deringer VL; Pickard CJ; Csányi G
    Phys Rev Lett; 2018 Apr; 120(15):156001. PubMed ID: 29756876
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Growth Pattern of Large Morse Clusters with Medium-Range Potentials.
    Chen L; Liang T; Wang L
    J Phys Chem Lett; 2022 Oct; 13(42):9801-9808. PubMed ID: 36227940
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Energy landscapes of quantum Lennard-Jones solids.
    Chakravarty C
    J Phys Chem A; 2011 Jun; 115(25):7028-33. PubMed ID: 21456608
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fullerene C60: surface energy and interfacial interactions in aqueous systems.
    Ma X; Wigington B; Bouchard D
    Langmuir; 2010 Jul; 26(14):11886-93. PubMed ID: 20521798
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Dynamics Sampling in Transition Pathway Space.
    Zhou H; Tao P
    J Chem Theory Comput; 2018 Jan; 14(1):14-29. PubMed ID: 29191015
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The performance of minima hopping and evolutionary algorithms for cluster structure prediction.
    Schönborn SE; Goedecker S; Roy S; Oganov AR
    J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Free Energy Landscapes, Diffusion Coefficients, and Kinetic Rates from Transition Paths.
    Palacio-Rodriguez K; Pietrucci F
    J Chem Theory Comput; 2022 Aug; 18(8):4639-4648. PubMed ID: 35899416
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Path Integral Energy Landscapes for Water Clusters.
    Vaillant CL; Althorpe SC; Wales DJ
    J Chem Theory Comput; 2019 Jan; 15(1):33-42. PubMed ID: 30550261
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Exploring the landscape of Buckingham potentials for silica by machine learning: Soft vs hard interatomic forcefields.
    Liu H; Li Y; Fu Z; Li K; Bauchy M
    J Chem Phys; 2020 Feb; 152(5):051101. PubMed ID: 32035454
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Symmetrisation schemes for global optimisation of atomic clusters.
    Oakley MT; Johnston RL; Wales DJ
    Phys Chem Chem Phys; 2013 Mar; 15(11):3965-76. PubMed ID: 23389762
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Exploring the free-energy landscape of a rotating superfluid.
    Cleary A; Page J
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37832521
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Energy landscapes-Past, present, and future: A perspective.
    Schön JC
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39101536
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Global analysis of energy landscapes for materials modeling: A test case for C60.
    Csányi G; Morgan JWR; Wales DJ
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37698195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.