These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37698340)

  • 1. Insights into the catalytic mechanism of Grimontia hollisae collagenase through structural and mutational analyses.
    Ueshima S; Yasumoto M; Kitagawa Y; Akazawa K; Takita T; Tanaka K; Hattori S; Mizutani K; Mikami B; Yasukawa K
    FEBS Lett; 2023 Oct; 597(19):2473-2483. PubMed ID: 37698340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Grimontia hollisae collagenase provides insights into its novel substrate specificity toward collagen.
    Ikeuchi T; Yasumoto M; Takita T; Tanaka K; Kusubata M; Hayashida O; Hattori S; Mizutani K; Mikami B; Yasukawa K
    J Biol Chem; 2022 Aug; 298(8):102109. PubMed ID: 35679897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of histidine and tyrosine residues in the active site of collagenase in Grimontia hollisae.
    Hayashi K; Ikeuchi T; Morishita R; Qian J; Kojima K; Takita T; Tanaka K; Hattori S; Yasukawa K
    J Biochem; 2020 Oct; 168(4):385-392. PubMed ID: 32386303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies on the activities of collagenases from Grimontia hollisae and Clostridium hystoliticum in the hydrolysis of synthetic substrates.
    Takita T; Qian J; Geng H; He Z; Nemoto S; Mori M; Tanaka K; Hattori S; Kojima K; Yasukawa K
    J Biochem; 2018 May; 163(5):425-431. PubMed ID: 29444248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal segment of collagenase in
    Tanaka K; Teramura N; Hayashida O; Iijima K; Okitsu T; Hattori S
    FEBS Open Bio; 2018 Oct; 8(10):1691-1702. PubMed ID: 30338219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant collagenase from Grimontia hollisae as a tissue dissociation enzyme for isolating primary cells.
    Tanaka K; Okitsu T; Teramura N; Iijima K; Hayashida O; Teramae H; Hattori S
    Sci Rep; 2020 Mar; 10(1):3927. PubMed ID: 32127566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.
    Grams F; Reinemer P; Powers JC; Kleine T; Pieper M; Tschesche H; Huber R; Bode W
    Eur J Biochem; 1995 Mar; 228(3):830-41. PubMed ID: 7737183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of a novel collagenase gene from the gram-negative bacterium Grimontia (Vibrio) hollisae 1706B and its efficient expression in Brevibacillus choshinensis.
    Teramura N; Tanaka K; Iijima K; Hayashida O; Suzuki K; Hattori S; Irie S
    J Bacteriol; 2011 Jun; 193(12):3049-56. PubMed ID: 21515782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine]10.
    Kawahara K; Nishi Y; Nakamura S; Uchiyama S; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Dec; 44(48):15812-22. PubMed ID: 16313184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.
    Okuyama K; Hongo C; Wu G; Mizuno K; Noguchi K; Ebisuzaki S; Tanaka Y; Nishino N; Bächinger HP
    Biopolymers; 2009 May; 91(5):361-72. PubMed ID: 19137577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself.
    Lovejoy B; Hassell AM; Luther MA; Weigl D; Jordan SR
    Biochemistry; 1994 Jul; 33(27):8207-17. PubMed ID: 8031754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The triple helical structure and stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units.
    Motooka D; Kawahara K; Nakamura S; Doi M; Nishi Y; Nishiuchi Y; Kang YK; Nakazawa T; Uchiyama S; Yoshida T; Ohkubo T; Kobayashi Y
    Biopolymers; 2012; 98(2):111-21. PubMed ID: 22020801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position.
    Schumacher M; Mizuno K; Bächinger HP
    J Biol Chem; 2005 May; 280(21):20397-403. PubMed ID: 15784619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique side chain conformation of a Leu residue in a triple-helical structure.
    Okuyama K; Narita H; Kawaguchi T; Noguchi K; Tanaka Y; Nishino N
    Biopolymers; 2007 Jun; 86(3):212-21. PubMed ID: 17373653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
    Mizuno K; Hayashi T; Peyton DH; Bachinger HP
    J Biol Chem; 2004 Jan; 279(1):282-7. PubMed ID: 14576161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix.
    Schumacher MA; Mizuno K; Bächinger HP
    J Biol Chem; 2006 Sep; 281(37):27566-74. PubMed ID: 16798737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two crystal modifications of (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 reveal the puckering preference of Hyp(X) in the Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs in collagen helices.
    Okuyama K; Morimoto T; Narita H; Kawaguchi T; Mizuno K; Bächinger HP; Wu G; Noguchi K
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):88-96. PubMed ID: 20057053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational requirement for lysine hydroxylation in collagen. Structural studies on synthetic peptide substrates of lysyl hydroxylase.
    Jiang P; Ananthanarayanan VS
    J Biol Chem; 1991 Dec; 266(34):22960-7. PubMed ID: 1744090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the collagen model peptide (Pro-Pro-Gly)4-Hyp-Asp-Gly-(Pro-Pro-Gly)4 at 1.0 Å resolution.
    Okuyama K; Kawaguchi T; Shimura M; Noguchi K; Mizuno K; Bächinger HP
    Biopolymers; 2013 Jul; 99(7):436-47. PubMed ID: 23616212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.