These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37698381)

  • 1. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training.
    Jacques M; Landen S; Romero JA; Hiam D; Schittenhelm RB; Hanchapola I; Shah AD; Voisin S; Eynon N
    FASEB J; 2023 Oct; 37(10):e23184. PubMed ID: 37698381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in muscle protein expression and DNA methylation in response to exercise training.
    Landen S; Jacques M; Hiam D; Alvarez-Romero J; Schittenhelm RB; Shah AD; Huang C; Steele JR; Harvey NR; Haupt LM; Griffiths LR; Ashton KJ; Lamon S; Voisin S; Eynon N
    Biol Sex Differ; 2023 Sep; 14(1):56. PubMed ID: 37670389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle.
    Ruple BA; Godwin JS; Mesquita PHC; Osburn SC; Vann CG; Lamb DA; Sexton CL; Candow DG; Forbes SC; Frugé AD; Kavazis AN; Young KC; Seaborne RA; Sharples AP; Roberts MD
    FASEB J; 2021 Sep; 35(9):e21864. PubMed ID: 34423880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic exercise training resets the human skeletal muscle methylome 10 years after breast cancer treatment and survival.
    Gorski PP; Raastad T; Ullrich M; Turner DC; Hallén J; Savari SI; Nilsen TS; Sharples AP
    FASEB J; 2023 Jan; 37(1):e22720. PubMed ID: 36542473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans.
    Batterson PM; McGowan EM; Stierwalt HD; Ehrlicher SE; Newsom SA; Robinson MM
    J Appl Physiol (1985); 2023 Feb; 134(2):339-355. PubMed ID: 36603044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients - A randomized crossover trial.
    Savikj M; Stocks B; Sato S; Caidahl K; Krook A; Deshmukh AS; Zierath JR; Wallberg-Henriksson H
    Metabolism; 2022 Oct; 135():155268. PubMed ID: 35908579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial (Intraining-MET).
    Gallo-Villegas J; Aristizabal JC; Estrada M; Valbuena LH; Narvaez-Sanchez R; Osorio J; Aguirre-Acevedo DC; Calderón JC
    Trials; 2018 Feb; 19(1):144. PubMed ID: 29482601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis.
    Andonian BJ; Johannemann A; Hubal MJ; Pober DM; Koss A; Kraus WE; Bartlett DB; Huffman KM
    Arthritis Res Ther; 2021 Jul; 23(1):187. PubMed ID: 34246305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-intensity interval training remodels the proteome and acetylome of human skeletal muscle.
    Hostrup M; Lemminger AK; Stocks B; Gonzalez-Franquesa A; Larsen JK; Quesada JP; Thomassen M; Weinert BT; Bangsbo J; Deshmukh AS
    Elife; 2022 May; 11():. PubMed ID: 35638262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic β
    Hostrup M; Onslev J; Jacobson GA; Wilson R; Bangsbo J
    J Physiol; 2018 Jan; 596(2):231-252. PubMed ID: 28983994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle.
    Cui X; Zhang Y; Wang Z; Yu J; Kong Z; Ružić L
    Exp Physiol; 2019 Oct; 104(10):1505-1517. PubMed ID: 31357248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals.
    Schild M; Ruhs A; Beiter T; Zügel M; Hudemann J; Reimer A; Krumholz-Wagner I; Wagner C; Keller J; Eder K; Krüger K; Krüger M; Braun T; Nieß A; Steinacker J; Mooren FC
    J Proteomics; 2015 Jun; 122():119-32. PubMed ID: 25857276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism.
    Landen S; Jacques M; Hiam D; Alvarez-Romero J; Harvey NR; Haupt LM; Griffiths LR; Ashton KJ; Lamon S; Voisin S; Eynon N
    Clin Epigenetics; 2021 Nov; 13(1):202. PubMed ID: 34732242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans.
    Robinson MM; Dasari S; Konopka AR; Johnson ML; Manjunatha S; Esponda RR; Carter RE; Lanza IR; Nair KS
    Cell Metab; 2017 Mar; 25(3):581-592. PubMed ID: 28273480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.
    Aguiar PF; Magalhães SM; Fonseca IA; da Costa Santos VB; de Matos MA; Peixoto MF; Nakamura FY; Crandall C; Araújo HN; Silveira LR; Rocha-Vieira E; de Castro Magalhães F; Amorim FT
    Cell Stress Chaperones; 2016 Sep; 21(5):793-804. PubMed ID: 27278803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work.
    MacInnis MJ; Zacharewicz E; Martin BJ; Haikalis ME; Skelly LE; Tarnopolsky MA; Murphy RM; Gibala MJ
    J Physiol; 2017 May; 595(9):2955-2968. PubMed ID: 27396440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity.
    Rowlands DS; Page RA; Sukala WR; Giri M; Ghimbovschi SD; Hayat I; Cheema BS; Lys I; Leikis M; Sheard PW; Wakefield SJ; Breier B; Hathout Y; Brown K; Marathi R; Orkunoglu-Suer FE; Devaney JM; Leiken B; Many G; Krebs J; Hopkins WG; Hoffman EP
    Physiol Genomics; 2014 Oct; 46(20):747-65. PubMed ID: 25138607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-volume HIIT and MICT speed V̇o
    Gildea N; McDermott A; Rocha J; Crognale D; Nevin A; O'Shea D; Green S; Egaña M
    J Appl Physiol (1985); 2022 Aug; 133(2):273-287. PubMed ID: 35678744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats.
    Li FH; Sun L; Wu DS; Gao HE; Min Z
    Aging (Albany NY); 2019 Jun; 11(12):4159-4182. PubMed ID: 31241467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of multiple statistical methods to estimate variability and individual response to training.
    Jacques M; Landen S; Romero JA; Yan X; Hiam D; Jones P; Gurd B; Eynon N; Voisin S
    Eur J Sport Sci; 2023 Apr; 23(4):588-598. PubMed ID: 35234572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.