These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37698381)

  • 21. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults.
    Marcangeli V; Youssef L; Dulac M; Carvalho LP; Hajj-Boutros G; Reynaud O; Guegan B; Buckinx F; Gaudreau P; Morais JA; Mauriège P; Noirez P; Aubertin-Leheudre M; Gouspillou G
    J Cachexia Sarcopenia Muscle; 2022 Jun; 13(3):1526-1540. PubMed ID: 35257499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory.
    Turner DC; Seaborne RA; Sharples AP
    Sci Rep; 2019 Mar; 9(1):4251. PubMed ID: 30862794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The gene SMART study: method, study design, and preliminary findings.
    Yan X; Eynon N; Papadimitriou ID; Kuang J; Munson F; Tirosh O; O'Keefe L; Griffiths LR; Ashton KJ; Byrne N; Pitsiladis YP; Bishop DJ
    BMC Genomics; 2017 Nov; 18(Suppl 8):821. PubMed ID: 29143594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle.
    Maasar MF; Turner DC; Gorski PP; Seaborne RA; Strauss JA; Shepherd SO; Cocks M; Pillon NJ; Zierath JR; Hulton AT; Drust B; Sharples AP
    Front Physiol; 2021; 12():619447. PubMed ID: 33679435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-course of V̇o
    Gildea N; McDermott A; Rocha J; O'Shea D; Green S; Egaña M
    J Appl Physiol (1985); 2021 Jun; 130(6):1646-1659. PubMed ID: 33792400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal Muscle DNA Methylation and mRNA Responses to a Bout of Higher versus Lower Load Resistance Exercise in Previously Trained Men.
    Sexton CL; Godwin JS; McIntosh MC; Ruple BA; Osburn SC; Hollingsworth BR; Kontos NJ; Agostinelli PJ; Kavazis AN; Ziegenfuss TN; Lopez HL; Smith R; Young KC; Dwaraka VB; Frugé AD; Mobley CB; Sharples AP; Roberts MD
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The physiological impact of high-intensity interval training in octogenarians with comorbidities.
    Blackwell JEM; Gharahdaghi N; Brook MS; Watanabe S; Boereboom CL; Doleman B; Lund JN; Wilkinson DJ; Smith K; Atherton PJ; Williams JP; Phillips BE
    J Cachexia Sarcopenia Muscle; 2021 Aug; 12(4):866-879. PubMed ID: 34060253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults.
    Ryan BJ; Schleh MW; Ahn C; Ludzki AC; Gillen JB; Varshney P; Van Pelt DW; Pitchford LM; Chenevert TL; Gioscia-Ryan RA; Howton SM; Rode T; Hummel SL; Burant CF; Little JP; Horowitz JF
    J Clin Endocrinol Metab; 2020 Aug; 105(8):e2941-59. PubMed ID: 32492705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Six weeks of high-intensity interval training enhances contractile activity induced vascular reactivity and skeletal muscle perfusion in older adults.
    Herrod PJJ; Atherton PJ; Smith K; Williams JP; Lund JN; Phillips BE
    Geroscience; 2021 Dec; 43(6):2667-2678. PubMed ID: 34562202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension.
    Fiorenza M; Gunnarsson TP; Ehlers TS; Bangsbo J
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13208. PubMed ID: 30339318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training.
    Egan B; Dowling P; O'Connor PL; Henry M; Meleady P; Zierath JR; O'Gorman DJ
    Proteomics; 2011 Apr; 11(8):1413-28. PubMed ID: 21360670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A HIF-1 signature dominates the attenuation in the human skeletal muscle transcriptional response to high-intensity interval training.
    Norrbom JM; Ydfors M; Lovric A; Perry CGR; Rundqvist H; Rullman E
    J Appl Physiol (1985); 2022 Jun; 132(6):1448-1459. PubMed ID: 35482326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial adaptations to high intensity interval training in older females and males.
    Chrøis KM; Dohlmann TL; Søgaard D; Hansen CV; Dela F; Helge JW; Larsen S
    Eur J Sport Sci; 2020 Feb; 20(1):135-145. PubMed ID: 31145037
    [No Abstract]   [Full Text] [Related]  

  • 35. High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men.
    Woodhead JST; D'Souza RF; Hedges CP; Wan J; Berridge MV; Cameron-Smith D; Cohen P; Hickey AJR; Mitchell CJ; Merry TL
    J Appl Physiol (1985); 2020 May; 128(5):1346-1354. PubMed ID: 32271093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes.
    Andonian BJ; Bartlett DB; Huebner JL; Willis L; Hoselton A; Kraus VB; Kraus WE; Huffman KM
    Arthritis Res Ther; 2018 Dec; 20(1):283. PubMed ID: 30587230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals.
    Gunnarsson TP; Brandt N; Fiorenza M; Hostrup M; Pilegaard H; Bangsbo J
    Physiol Rep; 2019 Feb; 7(4):e13976. PubMed ID: 30793541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise stress leads to an acute loss of mitochondrial proteins and disruption of redox control in skeletal muscle of older subjects: An underlying decrease in resilience with aging?
    Pugh JN; Stretton C; McDonagh B; Brownridge P; McArdle A; Jackson MJ; Close GL
    Free Radic Biol Med; 2021 Dec; 177():88-99. PubMed ID: 34655746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-intensity interval training in chronic kidney disease: A randomized pilot study.
    Beetham KS; Howden EJ; Fassett RG; Petersen A; Trewin AJ; Isbel NM; Coombes JS
    Scand J Med Sci Sports; 2019 Aug; 29(8):1197-1204. PubMed ID: 31025412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of skeletal muscle and serum metabolites with maximum power output gains in response to continuous endurance or high-intensity interval training programs: The TIMES study - A randomized controlled trial.
    Castro A; Duft RG; Ferreira MLV; Andrade ALL; Gáspari AF; Silva LM; Oliveira-Nunes SG; Cavaglieri CR; Ghosh S; Bouchard C; Chacon-Mikahil MPT
    PLoS One; 2019; 14(2):e0212115. PubMed ID: 30742692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.