These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37698612)

  • 1. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection on chest computed tomography: comparison of simulated lower radiation doses.
    Salman R; Nguyen HN; Sher AC; Hallam K; Seghers VJ; Sammer MBK
    Eur J Pediatr; 2023 Nov; 182(11):5159-5165. PubMed ID: 37698612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection in computed tomography of the chest.
    Salman R; Nguyen HN; Sher AC; Hallam KA; Seghers VJ; Sammer MBK
    Clin Imaging; 2023 Sep; 101():50-55. PubMed ID: 37301051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults.
    Hardie RC; Trout AT; Dillman JR; Narayanan BN; Tanimoto AA
    AJR Am J Roentgenol; 2024 Feb; 222(2):e2330345. PubMed ID: 37991333
    [No Abstract]   [Full Text] [Related]  

  • 4. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume.
    Zhao Y; de Bock GH; Vliegenthart R; van Klaveren RJ; Wang Y; Bogoni L; de Jong PA; Mali WP; van Ooijen PM; Oudkerk M
    Eur Radiol; 2012 Oct; 22(10):2076-84. PubMed ID: 22814824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population.
    Young S; Lo P; Kim G; Brown M; Hoffman J; Hsu W; Wahi-Anwar W; Flores C; Lee G; Noo F; Goldin J; McNitt-Gray M
    Med Phys; 2017 Apr; 44(4):1337-1346. PubMed ID: 28122122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.
    Den Harder AM; Willemink MJ; van Hamersvelt RW; Vonken EJ; Milles J; Schilham AM; Lammers JW; de Jong PA; Leiner T; Budde RP
    Eur J Radiol; 2016 Feb; 85(2):346-51. PubMed ID: 26781139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv.
    Messerli M; Kluckert T; Knitel M; Rengier F; Warschkow R; Alkadhi H; Leschka S; Wildermuth S; Bauer RW
    Eur J Radiol; 2016 Dec; 85(12):2217-2224. PubMed ID: 27842670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra-low-Dose CT With Tin Filtration.
    Takahashi EA; Koo CW; White DB; Lindell RM; Sykes AG; Levin DL; Kuzo RS; Wolf M; Bogoni L; Carter RE; McCollough CH; Fletcher JG
    J Thorac Imaging; 2018 Nov; 33(6):396-401. PubMed ID: 30048344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT.
    Jungblut L; Euler A; Landsmann A; Englmaier V; Mergen V; Sefirovic M; Frauenfelder T
    Acta Radiol; 2024 Oct; 65(10):1238-1245. PubMed ID: 39279297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases.
    Yanagawa M; Honda O; Yoshida S; Ono Y; Inoue A; Daimon T; Sumikawa H; Mihara N; Johkoh T; Tomiyama N; Nakamura H
    Acad Radiol; 2009 Aug; 16(8):924-33. PubMed ID: 19394873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
    Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B
    Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population.
    Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR
    PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 0.3-mSv CT to Standard-Dose CT for Detection of Lung Nodules in Children and Young Adults With Cancer.
    Thapaliya S; Gilligan LA; Brady SL; Anton CG; Crotty EJ; Nasser MP; Geller JI; Pressey JG; Zhang B; Dillman JR; Trout AT
    AJR Am J Roentgenol; 2021 Dec; 217(6):1444-1451. PubMed ID: 34232694
    [No Abstract]   [Full Text] [Related]  

  • 14. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging.
    Huber A; Landau J; Ebner L; Bütikofer Y; Leidolt L; Brela B; May M; Heverhagen J; Christe A
    Eur Radiol; 2016 Oct; 26(10):3643-52. PubMed ID: 26813670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of Visual Reading and Computer-Aided Diagnosis.
    Silva M; Schaefer-Prokop CM; Jacobs C; Capretti G; Ciompi F; van Ginneken B; Pastorino U; Sverzellati N
    Invest Radiol; 2018 Aug; 53(8):441-449. PubMed ID: 29543693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules.
    Yamada Y; Shiomi E; Hashimoto M; Abe T; Matsusako M; Saida Y; Ogawa K
    Radiology; 2018 Apr; 287(1):333-339. PubMed ID: 29206596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralow dose CT for pulmonary nodule detection with chest x-ray equivalent dose - a prospective intra-individual comparative study.
    Messerli M; Kluckert T; Knitel M; Wälti S; Desbiolles L; Rengier F; Warschkow R; Bauer RW; Alkadhi H; Leschka S; Wildermuth S
    Eur Radiol; 2017 Aug; 27(8):3290-3299. PubMed ID: 28093625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography.
    Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K
    Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software.
    Yang L; Liu H; Han J; Xu S; Zhang G; Wang Q; Du Y; Yang F; Zhao X; Shi G
    Clin Radiol; 2023 Jul; 78(7):525-531. PubMed ID: 36948944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Performance of Deep-learning-based Artificial Intelligence on Detection of Pulmonary Nodules in Chest CT].
    Li X; Guo F; Zhou Z; Zhang F; Wang Q; Peng Z; Su D; Fan Y; Wang Y
    Zhongguo Fei Ai Za Zhi; 2019 Jun; 22(6):336-340. PubMed ID: 31196366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.