These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 37698672)
1. Response to comments on: Braccia, Amy, Jamie Lau, Jesse Robinson, Michael Croasdaile, Jeong Park, and Art Parola (2023). "Macroinvertebrate assemblages from a stream-wetland complex: A case study with implications for assessing restored hydrologic functions". Braccia A; Robinson J; Croasdaile M; Parola A; Lau J Environ Monit Assess; 2023 Sep; 195(10):1197. PubMed ID: 37698672 [No Abstract] [Full Text] [Related]
2. Comments on: Braccia, Amy, Jamie Lau, Jesse Robinson, Michael Croasdaile, Jeong Park, and Art Parola (2023). "Macroinvertebrate assemblages from a stream-wetland complex: a case study with implications for assessing restored hydrologic functions". Campbell JJN Environ Monit Assess; 2023 Sep; 195(10):1196. PubMed ID: 37698702 [No Abstract] [Full Text] [Related]
3. Macroinvertebrate assemblages from a stream-wetland complex: a case study with implications for assessing restored hydrologic functions. Braccia A; Lau J; Robinson J; Croasdaile M; Park J; Parola A Environ Monit Assess; 2023 Feb; 195(3):394. PubMed ID: 36780093 [TBL] [Abstract][Full Text] [Related]
4. Freshwater release into estuarine wetlands changes the structure of benthic invertebrate assemblages: A case study from the Yellow River Delta. Yang M; Lu K; Batzer DP; Wu H Sci Total Environ; 2019 Oct; 687():752-758. PubMed ID: 31412478 [TBL] [Abstract][Full Text] [Related]
5. Macroinvertebrate assemblages along a gradient of physicochemical characteristics in four riverine wetlands, Upper Blue Nile basin, Northwestern Ethiopia. Assefa WW; Eneyew BG; Wondie A Environ Monit Assess; 2023 May; 195(6):643. PubMed ID: 37147387 [TBL] [Abstract][Full Text] [Related]
6. A comparison of metric scoring and health status classification methods to evaluate benthic macroinvertebrate-based index of biotic integrity performance in Poyang Lake wetland. You Q; Yang W; Jian M; Hu Q Sci Total Environ; 2021 Mar; 761():144112. PubMed ID: 33360123 [TBL] [Abstract][Full Text] [Related]
8. Effects of human-induced environmental changes on benthic macroinvertebrate assemblages of wetlands in Lake Tana Watershed, Northwest Ethiopia. Gezie A; Anteneh W; Dejen E; Mereta ST Environ Monit Assess; 2017 Apr; 189(4):152. PubMed ID: 28275984 [TBL] [Abstract][Full Text] [Related]
9. Aquatic macrophyte and macroinvertebrate diversity and conservation in wetlands of the Sinos River basin. Maltchik L; Rolon AS; Stenert C Braz J Biol; 2010 Dec; 70(4 Suppl):1179-84. PubMed ID: 21225159 [TBL] [Abstract][Full Text] [Related]
10. Climate- versus geographic-dependent patterns in the spatial distribution of macroinvertebrate assemblages in New World depressional wetlands. Stenert C; Pires MM; Epele LB; Grech MG; Maltchik L; McLean KI; Mushet DM; Batzer DP Glob Chang Biol; 2020 Dec; 26(12):6895-6903. PubMed ID: 32979885 [TBL] [Abstract][Full Text] [Related]
11. Landscape characteristics of a stream and wetland mitigation banking program. BenDor T; Sholtes J; Doyle MW Ecol Appl; 2009 Dec; 19(8):2078-92. PubMed ID: 20014580 [TBL] [Abstract][Full Text] [Related]
12. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. Wolf KL; Noe GB; Ahn C J Environ Qual; 2013 Jul; 42(4):1245-55. PubMed ID: 24216376 [TBL] [Abstract][Full Text] [Related]
13. Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. de Vries J; Kraak MHS; Verdonschot RCM; Verdonschot PFM Sci Total Environ; 2019 Dec; 694():133630. PubMed ID: 31394327 [TBL] [Abstract][Full Text] [Related]
14. Spatial correlation of macroinvertebrate assemblages in streams and the implications for bioassessment programs. Shupryt MP; Studinski JM Environ Monit Assess; 2021 May; 193(6):322. PubMed ID: 33945027 [TBL] [Abstract][Full Text] [Related]
15. [Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park]. Wang WJ; Chu L; Si C; Zhu R; Chen WH; Chen FM; Yan YZ Dongwuxue Yanjiu; 2013 Aug; 34(4):417-28. PubMed ID: 23913894 [TBL] [Abstract][Full Text] [Related]
16. [A quantitative method and case analysis for assessing water health]. Li YF; Liu HY; Hao JF; Zheng N; Cao X Huan Jing Ke Xue; 2012 Feb; 33(2):346-51. PubMed ID: 22509566 [TBL] [Abstract][Full Text] [Related]
17. Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages. Zhang Y; Leung JYS; Zhang Y; Cai Y; Zhang Z; Li K Environ Pollut; 2021 Apr; 275():116655. PubMed ID: 33618216 [TBL] [Abstract][Full Text] [Related]
18. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Johnston CA; Shmagin BA; Frost PC; Cherrier C; Larson JH; Lamberti GA; Bridgham SD Sci Total Environ; 2008 Oct; 404(2-3):326-34. PubMed ID: 18054999 [TBL] [Abstract][Full Text] [Related]
19. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem. Torgeson JM; Rosenfeld CE; Dunshee AJ; Duhn K; Schmitter R; O'Hara PA; Ng GHC; Santelli CM Environ Sci Process Impacts; 2022 Sep; 24(9):1360-1382. PubMed ID: 35661843 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Dong H; Qian L; Yan J; Wang L Environ Monit Assess; 2020 Aug; 192(9):585. PubMed ID: 32809133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]