These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37698852)

  • 1. Free-Energy Landscape and Rate Estimation of the Aromatic Ring Flips in Basic Pancreatic Trypsin Inhibitors Using Metadynamics.
    Kulkarni M; Söderhjelm P
    J Chem Theory Comput; 2023 Oct; 19(19):6605-6618. PubMed ID: 37698852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.
    Weininger U; Modig K; Akke M
    Biochemistry; 2014 Jul; 53(28):4519-25. PubMed ID: 24983918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow aromatic ring flips detected despite near-degenerate NMR frequencies of the exchanging nuclei.
    Weininger U; Respondek M; Löw C; Akke M
    J Phys Chem B; 2013 Aug; 117(31):9241-7. PubMed ID: 23859599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
    Akke M; Weininger U
    J Phys Chem B; 2023 Jan; 127(3):591-599. PubMed ID: 36640108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow ring flips in aromatic cluster of GB1 studied by aromatic
    Dreydoppel M; Raum HN; Weininger U
    J Biomol NMR; 2020 Mar; 74(2-3):183-191. PubMed ID: 32016706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing protein breathing motions associated with aromatic ring flipping.
    Mariño Pérez L; Ielasi FS; Bessa LM; Maurin D; Kragelj J; Blackledge M; Salvi N; Bouvignies G; Palencia A; Jensen MR
    Nature; 2022 Feb; 602(7898):695-700. PubMed ID: 35173330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins.
    Skalicky JJ; Mills JL; Sharma S; Szyperski T
    J Am Chem Soc; 2001 Jan; 123(3):388-97. PubMed ID: 11456540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies.
    Wagner G; DeMarco A; Wüthrich K
    Biophys Struct Mech; 1976 Aug; 2(2):139-58. PubMed ID: 9165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rigid Core and Flexible Surface of Amyloid Fibrils Probed by Magic-Angle-Spinning NMR Spectroscopy of Aromatic Residues.
    Becker LM; Berbon M; Vallet A; Grelard A; Morvan E; Bardiaux B; Lichtenecker R; Ernst M; Loquet A; Schanda P
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202219314. PubMed ID: 36738230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of amino acid side chains in membrane proteins by high field solid state deuterium nuclear magnetic resonance spectroscopy. Phenylalanine, tyrosine, and tryptophan.
    Kinsey RA; Kintanar A; Oldfield E
    J Biol Chem; 1981 Sep; 256(17):9028-36. PubMed ID: 7263697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations.
    Hetzel R; Wüthrich K; Deisenhofer J; Huber R
    Biophys Struct Mech; 1976 Aug; 2(2):159-80. PubMed ID: 1085644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OCRE Domains of Splicing Factors RBM5 and RBM10: Tyrosine Ring-Flip Frequencies Determined by Integrated Use of
    Martin BT; Malmstrom RD; Amaro RE; Wüthrich K
    Chembiochem; 2021 Feb; 22(3):565-570. PubMed ID: 32975902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
    Vugmeyster L; Ostrovsky D; Villafranca T; Sharp J; Xu W; Lipton AS; Hoatson GL; Vold RL
    J Phys Chem B; 2015 Nov; 119(47):14892-904. PubMed ID: 26529128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinvestigation of the aromatic side-chains in the basic pancreatic trypsin inhibitor by heteronuclear two-dimensional nuclear magnetic resonance.
    Wagner G; Brühwiler D; Wüthrich K
    J Mol Biol; 1987 Jul; 196(1):227-31. PubMed ID: 2443716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly destabilizing mutation, G37A, of the bovine pancreatic trypsin inhibitor retains the average native conformation but greatly increases local flexibility.
    Battiste JL; Li R; Woodward C
    Biochemistry; 2002 Feb; 41(7):2237-45. PubMed ID: 11841215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobility in proteins.
    Otting G; Liepinsh E; Wüthrich K
    Biochemistry; 1993 Apr; 32(14):3571-82. PubMed ID: 7682109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD.
    Gauto DF; Lebedenko OO; Becker LM; Ayala I; Lichtenecker R; Skrynnikov NR; Schanda P
    J Struct Biol X; 2023; 7():100079. PubMed ID: 36578472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a residue critical for maintaining the functional conformation of BPTI.
    Hanson WM; Beeser SA; Oas TG; Goldenberg DP
    J Mol Biol; 2003 Oct; 333(2):425-41. PubMed ID: 14529627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor.
    Wüthrich K; Wagner G
    FEBS Lett; 1975 Feb; 50(2):265-8. PubMed ID: 234403
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.