These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37698988)

  • 21. Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution.
    Zeng J; Giese TJ; Ekesan Ş; York DM
    J Chem Theory Comput; 2021 Nov; 17(11):6993-7009. PubMed ID: 34644071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-range empirical potential model: extension to hexagonal close-packed metals.
    Dai Y; Li JH; Liu BX
    J Phys Condens Matter; 2009 Sep; 21(38):385402. PubMed ID: 21832367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of Capping Potentials for Spectroscopic Parameters in Hybrid Quantum Mechanical/Mechanical Modeling Calculations.
    Komin S; Sebastiani D
    J Chem Theory Comput; 2009 Jun; 5(6):1490-8. PubMed ID: 26609842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials.
    Li W; Ou Q; Chen Y; Cao Y; Liu R; Zhang C; Zheng D; Cai C; Wu X; Wang H; Chen M; Zhang L
    J Phys Chem A; 2022 Dec; 126(49):9154-9164. PubMed ID: 36455227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Thermochemical Machine Learning for Potential Energy Curves and Geometry Optimization.
    Folmsbee DL; Koes DR; Hutchison GR
    J Phys Chem A; 2021 Mar; 125(9):1987-1993. PubMed ID: 33630611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of vacancy defects on generalized stacking fault energy of fcc metals.
    Asadi E; Zaeem MA; Moitra A; Tschopp MA
    J Phys Condens Matter; 2014 Mar; 26(11):115404. PubMed ID: 24589571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MLIP-3: Active learning on atomic environments with moment tensor potentials.
    Podryabinkin E; Garifullin K; Shapeev A; Novikov I
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37638620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force fields for metallic clusters and nanoparticles.
    Legenski N; Zhou C; Zhang Q; Han B; Wu J; Chen L; Cheng H; Forrey RC
    J Comput Chem; 2011 Jun; 32(8):1711-20. PubMed ID: 21370241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site.
    Fox SJ; Dziedzic J; Fox T; Tautermann CS; Skylaris CK
    Proteins; 2014 Dec; 82(12):3335-46. PubMed ID: 25212393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of aqueous free energies of solvation using coupled QM and MM explicit solvent simulations.
    Sadowsky D; Arey JS
    Phys Chem Chem Phys; 2020 Apr; 22(15):8021-8034. PubMed ID: 32239035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations.
    Lev B; Roux B; Noskov SY
    J Chem Theory Comput; 2013 Sep; 9(9):4165-75. PubMed ID: 26592407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.