BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37699413)

  • 21. Ultrafast Dynamics of Photoisomerization and Subsequent Unfolding of an Oligoazobenzene Foldamer.
    Steinwand S; Yu Z; Hecht S; Wachtveitl J
    J Am Chem Soc; 2016 Oct; 138(39):12997-13005. PubMed ID: 27598007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching.
    Brown RA; Diemer V; Webb SJ; Clayden J
    Nat Chem; 2013 Oct; 5(10):853-60. PubMed ID: 24056342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor.
    Luo X; Zhang D; Weinstein H
    Protein Eng; 1994 Dec; 7(12):1441-8. PubMed ID: 7716154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains.
    Lu X; Gross AW; Lodish HF
    J Biol Chem; 2006 Mar; 281(11):7002-11. PubMed ID: 16414957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A lipid-mediated conformational switch modulates the thermosensing activity of DesK.
    Inda ME; Vandenbranden M; Fernández A; de Mendoza D; Ruysschaert JM; Cybulski LE
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3579-84. PubMed ID: 24522108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of the signal transduction via transmembrane domain of the human growth hormone receptor.
    Bocharov EV; Lesovoy DM; Bocharova OV; Urban AS; Pavlov KV; Volynsky PE; Efremov RG; Arseniev AS
    Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1410-1420. PubMed ID: 29571748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical mechanics of protein folding, unfolding and fluctuation.
    Gło N
    Adv Biophys; 1976; ():65-113. PubMed ID: 1015397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering a modular double-transmembrane synthetic receptor system for customizing cellular programs.
    Zhou J; Ge Q; Wang D; Guo Q; Tao Y
    Cell Rep; 2023 Apr; 42(4):112385. PubMed ID: 37043348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal Transduction and Amplification.
    Liu G; Huang S; Liu X; Chen W; Ma X; Cao S; Wang L; Chen L; Yang H
    Anal Chem; 2021 Oct; 93(41):13807-13814. PubMed ID: 34613712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building on endogenous lipid mediators to design synthetic receptor ligands.
    Chen L; Yan G; Ohwada T
    Eur J Med Chem; 2022 Mar; 231():114154. PubMed ID: 35124532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor.
    Kitanovic S; Ames P; Parkinson JS
    J Bacteriol; 2015 Aug; 197(15):2568-79. PubMed ID: 26013490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intermolecular communication on a liposomal membrane: enzymatic amplification of a photonic signal with a gemini peptide lipid as a membrane-bound artificial receptor.
    Mukai M; Maruo K; Sasaki Y; Kikuchi J
    Chemistry; 2012 Mar; 18(11):3258-63. PubMed ID: 22311830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates.
    Li H; Yan Y; Chen J; Shi K; Song C; Ji Y; Jia L; Li J; Qiao Y; Lin Y
    Sci Adv; 2023 Mar; 9(9):eade5853. PubMed ID: 36857444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.
    Bocharov EV; Sharonov GV; Bocharova OV; Pavlov KV
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt A):1417-1429. PubMed ID: 28131853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane.
    Bocharov EV; Lesovoy DM; Pavlov KV; Pustovalova YE; Bocharova OV; Arseniev AS
    Biochim Biophys Acta; 2016 Jun; 1858(6):1254-61. PubMed ID: 26903218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphitropic proteins: regulation by reversible membrane interactions (review).
    Johnson JE; Cornell RB
    Mol Membr Biol; 1999; 16(3):217-35. PubMed ID: 10503244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene, interaction, signal generation, signal divergence and signal transduction of the LH/CG receptor.
    Ryu KS; Gilchrist RL; Koo YB; Ji I; Ji TH
    Int J Gynaecol Obstet; 1998 Apr; 60 Suppl 1():S9-20. PubMed ID: 9833610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution.
    Nan B; Liu X; Zhou Y; Liu J; Zhang L; Wen J; Zhang X; Su XD; Wang YP
    Mol Microbiol; 2010 Mar; 75(6):1484-94. PubMed ID: 20149110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis.
    Søgaard AB; Løvschall KB; Montasell MC; Cramer CB; Marcet PM; Pedersen AB; Jakobsen JH; Zelikin AN
    Adv Biol (Weinh); 2024 May; ():e2400053. PubMed ID: 38767247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An unfolding story of helical transmembrane proteins.
    Renthal R
    Biochemistry; 2006 Dec; 45(49):14559-66. PubMed ID: 17144649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.