These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37699413)

  • 41. Characterization of a region of the lutropin receptor extracellular domain near transmembrane helix 1 that is important in ligand-mediated signaling.
    Alvarez CA; Narayan P; Huang J; Puett D
    Endocrinology; 1999 Apr; 140(4):1775-82. PubMed ID: 10098515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment.
    Bocharov EV; Mineev KS; Pavlov KV; Akimov SA; Kuznetsov AS; Efremov RG; Arseniev AS
    Biochim Biophys Acta Biomembr; 2017 Apr; 1859(4):561-576. PubMed ID: 27884807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Signal transduction by CD58: the transmembrane isoform transmits signals outside lipid rafts independently of the GPI-anchored isoform.
    Ariel O; Levi Y; Hollander N
    Cell Signal; 2009 Jul; 21(7):1100-8. PubMed ID: 19268704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transmembrane Prolines Mediate Signal Sensing and Decoding in Bacillus subtilis DesK Histidine Kinase.
    Fernández P; Porrini L; Albanesi D; Abriata LA; Dal Peraro M; de Mendoza D; Mansilla MC
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of the pHLIP transmembrane helix insertion pathway.
    Karabadzhak AG; Weerakkody D; Wijesinghe D; Thakur MS; Engelman DM; Andreev OA; Markin VS; Reshetnyak YK
    Biophys J; 2012 Apr; 102(8):1846-55. PubMed ID: 22768940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel.
    Weng WH; Li YT; Hsu HJ
    Sci Rep; 2017 Oct; 7(1):12792. PubMed ID: 28986565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state.
    Bocharov EV; Mineev KS; Volynsky PE; Ermolyuk YS; Tkach EN; Sobol AG; Chupin VV; Kirpichnikov MP; Efremov RG; Arseniev AS
    J Biol Chem; 2008 Mar; 283(11):6950-6. PubMed ID: 18178548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A mechanism for SRC kinase-dependent signaling by noncatalytic receptors.
    Cooper JA; Qian H
    Biochemistry; 2008 May; 47(21):5681-5688. PubMed ID: 18444664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction.
    Wang H; Min G; Glockshuber R; Sun TT; Kong XP
    J Mol Biol; 2009 Sep; 392(2):352-61. PubMed ID: 19577575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A system for artificial light signal transduction
    Yang H; Du S; Ye Z; Wang X; Yan Z; Lian C; Bao C; Zhu L
    Chem Sci; 2022 Feb; 13(8):2487-2494. PubMed ID: 35310493
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The principle of conformational signaling.
    Tompa P
    Chem Soc Rev; 2016 Jul; 45(15):4252-84. PubMed ID: 27242242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid-mediated folding/unfolding of phospholamban as a regulatory mechanism for the sarcoplasmic reticulum Ca2+-ATPase.
    Gustavsson M; Traaseth NJ; Karim CB; Lockamy EL; Thomas DD; Veglia G
    J Mol Biol; 2011 May; 408(4):755-65. PubMed ID: 21419777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup.
    Hanashima S; Murakami K; Yura M; Yano Y; Umegawa Y; Tsuchikawa H; Matsumori N; Seo S; Shinoda W; Murata M
    Biophys J; 2019 Jul; 117(2):307-318. PubMed ID: 31303249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural Basis for Activation of the Heterodimeric GABA
    Kim Y; Jeong E; Jeong JH; Kim Y; Cho Y
    J Mol Biol; 2020 Nov; 432(22):5966-5984. PubMed ID: 33058878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction, signal generation, signal divergence, and signal transduction of LH/CG and the receptor.
    Ji TH; Ryu KS; Gilchrist R; Ji I
    Recent Prog Horm Res; 1997; 52():431-53; discussion 454. PubMed ID: 9238862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GPI-anchored protein cleavage in the regulation of transmembrane signals.
    Sharom FJ; Radeva G
    Subcell Biochem; 2004; 37():285-315. PubMed ID: 15376625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.
    Liu T; Wang X
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):779-86. PubMed ID: 20929927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure/function analysis of the periplasmic histidine-binding protein. Mutations decreasing ligand binding alter the properties of the conformational change and of the closed form.
    Wolf A; Shaw EW; Oh BH; De Bondt H; Joshi AK; Ames GF
    J Biol Chem; 1995 Jul; 270(27):16097-106. PubMed ID: 7608172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.